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Abstract 
 
When making decisions, people tend to look back and forth between the alternatives until 
eventually making a choice.  Eye-tracking research has established that these shifts in attention 
are strongly linked to choice outcomes.  A predominant framework for understanding the 
dynamics of the choice process, and thus the effects of attention, is sequential sampling of 
information.  However, existing methods for estimating the attention parameters in these models 
are computationally costly and overly flexible, and yield estimates with unknown precision and 
bias.  Here we propose an estimation method that relies on a link between sequential sampling 
models and random utility models (RUM).  This method uses familiar econometric tools (i.e. 
Logit regression) and yields estimates that appear to be unbiased and relatively precise compared 
to existing methods, in a small fraction of the computation time. The RUM thus appears to be a 
useful tool for estimating the effects of attention on choice. 
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1 Introduction 
 
 A central question for choice researchers is how decision-makers collect information 
during the choice process, and how information collection can be measured and modeled (Sims, 
2003). To understand the role of information accumulation, economists have recently turned to 
sequential sampling models (Fehr & Rangel, 2011; Krajbich, Oud, & Fehr, 2014; Woodford, 
2014; Gossner, Steiner, & Stewart, n.d.; Fudenberg, Strack, & Strzalecki, 2018).  These models 
conceptualize the decision process as one of accumulation and comparison of noisy information 
up to a pre-specified confidence threshold. For example, the most well-known model of this 
class, the drift diffusion model (DDM), uses data on choice and the distribution of response time 
(RT) to identify latent decision parameters such as the strength of preference (quality of the 
sampled information) and the confidence required to decide.  

 
Attention to a given option — and the simultaneous inattention to the other option(s) — 

constrains the sampling process: attention favors the focal alternative at the expense of other(s). 
While attention can in some cases be inferred from people’s choices (Gabaix, 2017), a more 
direct approach is to use eye-tracking (Wang, Spezio, & Camerer, 2010; Knoepfle, Wang, & 
Camerer, 2009; Reutskaja, Nagel, Camerer, & Rangel, 2011; Arieli, Ben-Ami, & Rubinstein, 
2011; Lahey & Oxley, 2016; Devetag, Di Guida, & Polonio, 2016; Polonio, Di Guida, & 
Coricelli, 2015; Shi, Wedel, & Pieters, 2013; Chen & Krajbich, 2017).  Eye-tracking data – 
either collected in the laboratory, or increasingly, field settings1 –provides a dynamic, rich set of 
data that is useful for predicting choice above and beyond a subject’s stated preferences. Recent 
work has established a stable individual difference in the degree to which visual attention and 
choice are linked (Smith & Krajbich, 2018). 

 
Given that the link between attention and choice is empirically well-established and 

theoretically accounted for in the DDM framework, it is now important to develop statistical 
tools to study the link between attention and choice.  Doing so will allow researchers to better 
assess and predict the role of attention across contexts and decision-makers. In this paper, we 
propose an effective and efficient method for estimating the role of attention in choice. Our 
approach is based on recent results which demonstrate that the basic DDM can be represented by 
a random utility model (RUM) in which the distribution of utilities depends on time (Echenique 
& Saito, 2017; Webb, 2019). Here, we extend this result to incorporate the role of attention. This 
leads to approximation methods for estimating the role of attention using familiar methods in the 
econometrician’s toolkit, such as the standard Logit model. 
																																																								
1 Advances in mobile eye-tracking have enabled field research in the area. In a typical study, participants wear 
glasses with embedded eye-tracking technology while they shop in stores. The glasses record both eye movements 
and the environment, allowing researchers to investigate the role of attention in a field setting (e.g. Harwood & 
Jones, 2013; Bagdziunaite, Nassri, Clement & Ramsøy, 2014). While academic research in this area is nascent, a 
number of commercial enterprises are already collecting and using this data. Three examples include: 1) Market 
research firms like Nielsen are currently using eye-tracking to measure consumer responses to advertisements; 2) 
Consumer-grade eye-tracking is being tested and implemented by a number of firms, for both general use (Google 
Glass) as well as specific uses (VR headsets); and 3) Retailors like Amazon are implementing high-definition, high 
density, camera technology in brick-and-mortar locations that can track a shopper’s attention to specific products on 
the shelf. We expect further technological advances to be made in this area. For instance, researchers can take 
advantage of front-facing cameras on phones, tablets, and computers in order to better understand how consumers 
interact with and attend to the information on their screens. 



 
2 Background 
 

In the standard DDM, the agent is faced with two options of unknown utility.  At each 
instant in time, the agent samples a stochastic signal about the utility of each option.  The agent 
calculates the difference between the two signals and adds this new piece of evidence to the sum 
of all previous evidence.  This process continues until the accumulated evidence reaches a pre-
determined stopping criterion.  The optimal stopping criterion depends on various assumptions, 
but in the standard DDM, it is constant over time (Fudenberg et al., 2018).       

 
A central assumption in the standard DDM is that the stochastic signals from each option 

are i.i.d. over time. However, this assumption has been challenged based on two basic facts from 
cognitive science. First, people move their eyes around in discrete steps; eye movements are 
characterized by near-instantaneous transitions (“saccades”) between periods of fixed gaze 
(“fixations”) that typically last about 0.3 seconds. Second, decision-makers extract more 
information from items that are being fixated than from those that are not. Together, these two 
facts imply unaccounted-for autocorrelation in the time series of sampled signals.  In a binary 
decision, the agent spends some blocks of time looking at Option i and others at Option j. These 
blocks of time (or “dwells”) correspond to periods during which signals about either Option i or 
Option j are amplified. Consequently, if both options are positively-valued and Option i receives 
more attention than expected, it should be more preferred than expected.   

 
Currently, the most comprehensive method for estimating the relationship between 

attention and choice involves extending the DDM to include an attentional discounting parameter 
(θ), such that the rate of evidence accumulation (“drift rate”) is modulated by attention. This 
extension is known as the attentional DDM, or aDDM (Krajbich et al., 2010). Its usefulness 
stems from its ability to integrate multiple inputs (stated or inferred preferences and eye 
movements) to determine the joint probability distributions of choice and RT.  

 
The aDDM has been used to study choice behavior in a number of domains, including 

food (Fisher, 2017; Krajbich et al., 2010; Krajbich & Rangel, 2011; Towal, Mormann, & Koch, 
2013), durable goods (Krajbich, Lu, Camerer, & Rangel, 2012), artwork (Vaidya & Fellows, 
2015), social preferences (Ashby, Jekel, Dickert, & Glöckner, 2016; Smith & Krajbich, 2018), 
conditioned stimuli (Cavanagh, Wiecki, Kochar, & Frank, 2014), roaming bandits (Konovalov & 
Krajbich, 2016), and explicit lotteries (Smith & Krajbich, 2018; Stewart, Hermens, & Matthews, 
2015).  Additional studies have used the aDDM for inspiration, but without explicit model-
fitting, in the domains of morality (Pärnamets et al., 2015) and intertemporal choice (Fisher & 
Rangel, 2014).  Needless to say, the link between attention and choice is under intense study in a 
wide variety of choice environments. 

 
Smith & Krajbich (2018) describe how the aDDM accounts for several prominent 

features of typical choice data. As alluded to above, it captures the robust relationship between 
relative dwell-time advantage and choice probability: in a 2-3 second decision, a dwell-time 
advantage of 0.5 seconds results in a 30% increase in choice probability.  It also accounts for the 
utility-dependent probability of choosing the last-seen item: at indifference a typical subject 



chooses the last-seen item 70% of the time, but this probability increases (decreases) as the 
utility of the last-seen item increases (decreases). Finally, the model accounts for the finding that 
the effect of attention on choice increases with the utility of the option; in the extreme case of 
aversive items subjects are less likely to choose the more-attended option (Armel, Beaumel, & 
Rangel, 2008; Smith & Krajbich, 2019).  
 

Despite surprising stability across experiments in the link between attention and choice, 
there is of course interesting variation across individuals and contexts. Estimating this variation, 
and identifying which individuals or choice contexts are particularly prone to attentional 
manipulations is of particular importance.  However, a major obstacle to studying this variation 
is the difficulty in fitting the aDDM to data.  Fitting the model at the individual level requires 
many trials and even then, the fitting process is prone to issues. Though methods exist for 
simulating the RT distribution of the basic DDM, applying them to the aDDM is complicated by 
the fact that the simulations must incorporate the eye-movement data. As a result, the aDDM has 
typically been fit to data using very large Monte-Carlo simulations coupled with grid-search 
parameter selection to maximize likelihood functions (detailed below).   

 
This simulation/grid-search approach has several important limitations. First, the 

properties of the parameter estimates are unknown. If parameter estimates are biased, this has 
important implications for inference and predicting choices out-of-sample. Second, a grid search 
method does not directly yield standard errors for inference. This is particularly an issue for 
studies that attempt to demonstrate a difference in parameter estimates across subjects or 
conditions. While, in principle, bootstrap methods can be used to compute standard errors, they 
are limited in this case by the severe computational burden of the fitting process. Even with 
parallelization it can take days to fit the model to a group of subjects, which translates to weeks 
or even months of computation time to generate bootstrap confidence intervals.  Moreover, the 
traditional fitting process can be somewhat arbitrary. There are several researcher degrees of 
freedom: how many simulations to run, how many parameter combinations to test, how to adjust 
the RT bins, how to use eye-tracking data in the fitting process, etc. Additionally, the reliance on 
RT data in the traditional likelihood calculations could be a problem if the RT data are 
contaminated by other non-decision related processes.  

 
Here, we address these issues by demonstrating the equivalence of the aDDM to models 

within the class of RUM. This leads to approximation methods for estimating parameters of the 
aDDM directly from choice and eye-movement data using the RUM toolkit (e.g. Logit). As such, 
the properties of these estimates are well-described and standard errors can be computed directly. 
In contrast to the aDDM, the RUM approach to estimating attentional effects does not require 
any arbitrary binning decisions; it uses raw continuous measures of dwell proportion. While the 
aDDM might provide slightly different estimates of θ depending on the exact binning procedure, 
the RUM method provides a unique estimate. We find a significant improvement in parameter 
recovery for the attentional discounting parameter θ with more accurate Type 1 error rates 
compared to existing methods for estimating the aDDM.  
 
 
 
 



3 Binary Choice Model  
In the standard DDM, the agent is faced with two options i and j.  Each option has a 

subjective value 𝑣" which could be a function of various observable attributes 𝑋".2  At each 
instant in time the agent receives a stochastic Gaussian signal 𝑧",&~𝑁(𝑣", 𝑠"+) and similarly for j.  
Each signal zi,t is added to the previous signals for that option.  Formally, for each option i and j, 
there is an accumulator:3 
 

𝑍",& = /𝑧",0
&

012

																																																											(1) 

 
In the aDDM, there is one small, but important difference from the above: the mean of 

the signal distribution depends on the fixation location.  Let 𝑒",& capture the role of attention and 
let 𝑒",& = 1 if the agent is attending to option i, 0 otherwise. Then the signal zi,t is distributed with 
a mean that depends on decision-specific inputs vi and ei,t, as well as an agent-specific parameter 
𝜃:     
 

𝑧",&~𝑁7𝑣"(𝜃 + 𝑒",&(1 − 𝜃)), 𝑠"+:,																																																			(2) 
 
where 𝜃 ∈ [0,1].  If 𝜃 = 1 then attention plays no role, as in the standard DDM.  If 𝜃 = 0 then 
evidence is only accumulated for the attended option. 
 

To close the model, a stopping rule must be specified. In the DDM and aDDM, this rule 
takes the form of the difference between the accumulators crossing a constant threshold b:  
 

A𝑍",& − 𝑍B,&A ≥ 𝑏,																																																																			(3) 
 
with the largest accumulator, argmax{𝑍",&∗}, yielding the choice, where t* is the first t for which 
equation 3 is satisfied. The drift rate at time t is therefore the net rate of evidence accumulation 
towards option i: 7𝑣" − 𝑣B:𝜃 + (𝑒",&𝑣" − 𝑒B,&𝑣B)(1 − 𝜃).   
  
 There are three technical issues worth noting about the model.  First, since at each 
moment in time the stopping rule calculates the difference between two Gaussian random 
variables with variance si2, only the summed variance can be estimated: 
 

𝜎+ = 𝑠"+ + 𝑠B+.                                                            (4)   
 

																																																								
2	For	an	example	of	how	components	of	value	can	be	estimated	from	observable	attributes	in	the	DDM	
framework,	see	Chiong	et	al.,	(2018).	
3 In many applications, an “initial point” 𝑍",O can be specified to allow for any priors that decision makers might 
have. 
	



Second, in addition to the decision time t*, there is additional time required for the agent 
to attend to the first option and to physically indicate their choice once the threshold b is crossed.  
This extra time is known as the non-decision time (Ter). Thus, the recorded RT is: 
 

𝑅𝑇 = 𝑡∗ + 𝑇ST.																																																																		(5) 
 

While Ter is estimated during the full model-fitting procedure, it does not factor into the 
estimate of θ. 

 
Third, the units in the model are arbitrary, and so when estimating the best-fitting aDDM 

parameters, we include a scaling parameter d that converts any observables 𝑋" to subjective 
valuations, 𝑣" = 𝑋"𝑑. Because of the arbitrary units in the model, the parameter set d, b, and 𝜎 
are not uniquely identified, thus one must be normalized to identify the others.  Here we let b = 
±1, as is standard with the aDDM. 
 

Our first result demonstrates that the aDDM can be mapped into the space of RUMs. The 
result follows the mapping from the general sequential sampling model class in to the RUM 
demonstrated by Webb (2019), depicted in Figure 1. Since an accumulation model picks the 
alternative with the largest accumulator, and this is true even when the levels are divided by the 
RT (a positive number), the determinant of choice in classic DDM is a maximization over 
𝑣"	with an error term suitably normalized by the RT distribution. For example, a longer RT leads 
to a smaller error variance, typically referred to as the “speed-accuracy tradeoff.”  

The reason this result can be extended to include the aDDM lies in the exchangeability 
property of the accumulation. Since the accumulation in the aDDM is a Markov process, the 
order in which attention is allocated does not change the level of the accumulator. This means 
that only the proportion of attention allocated to an alternative interacted with the underlying 
value vi, determines the level of the accumulator. In combination with the threshold b, this 
determines the choice probability.4 

 If we let 𝑢" be the utility of option i, Ei be the fraction of t* spent attending to option i 
(with 𝐸B = 1 − 𝐸"), and 𝜂" be a random component of the utility, then the following result states 
this equivalence.  

Proposition 1. The aDDM can be represented by a RUM of the form:  

𝑢" = (𝐸" + 𝜃𝐸B)𝑣" + 𝜂",																																																										(6) 

where 𝜂"	ℎ𝑎𝑠	𝑚𝑒𝑎𝑛	𝑧𝑒𝑟𝑜	𝑎𝑛𝑑	the choice probabilities are given by, 

																																																								
4	It	should	be	noted	that	the	distribution	of	choice	probabilities	is	not	completely	independent	of	the	order	of	
attention	in	this	model.	For	example,	a	process	with	high	autocorrelation	in	the	gaze	pattern	will	lead	to	an	
earlier	boundary	crossing	than	a	process	with	low	autocorrelation,	even	with	equal	ex	ante	division	of	
attention	in	both	cases.	This	will	be	captured	by	the	distribution	of	𝜂" 	implied	by	Proposition	1	and	how	it	
depends	on	time.	



𝑃(𝑖, 𝑡) = 𝑃𝑟𝑜𝑏c𝐸"𝑣" − 𝐸B𝑣B + 𝜃7𝐸B𝑣" − 𝐸"𝑣B: > 𝜂" − 𝜂Be.																										(7)  

Proof. Following Webb (2018), 

𝑍",&∗ = 𝑣"/(𝜃 + 𝑒",&(1 − 𝜃))
&∗

2

+/𝜖",&
&∗

2

																																																			 

where 𝜖",& is the deviation from the drift rate due to the stochastic sampling. 

Moreover, 𝑎𝑟𝑔𝑚𝑎𝑥{𝑍",&∗} = 𝑎𝑟𝑔𝑚𝑎𝑥{jk,l∗
&∗
}, therefore this model can be represented via 

the RUM 

𝑢" = 𝐷(𝑒",&)𝑣" + 𝜂"																																																												 

where 𝐷(𝑒",&) ≡
2
&∗
∑ (𝜃 + 𝑒",&(1 − 𝜃))&∗
2 , and 𝜂" ≡

2
&∗
∑ 𝜖",&&∗
2 . 

The function 𝐷(𝑒",&) has the following interpretation. 

𝐷(𝑒",&) =
1
𝑡∗/(𝜃 + 𝑒",&(1 − 𝜃))

&∗

2

																																																																		 

=
1
𝑡∗/𝑒",&

&∗

2

+ 𝜃
1
𝑡∗/

71 − 𝑒",&:
&∗

2

																																																																				 

= 𝐸" + 𝜃(1 − 𝐸") = 	𝐸" + 𝜃𝐸B																																																																							 

∎ 

The relation of the aDDM to the RUM has important consequences for parameter 
estimation which we now discuss.  

 

 

 

 

 

 



(a)        (b)      (c) 

 

Figure 1: (a) The Equivalence between the DDM and the RUM. Here, the x-axis represents time 
and the y-axis represents accumulated evidence for Option i. In the DDM, the distribution of 
accumulated evidence has a mean that is a linear function of time with slope given by the value 
of Option i, plus some error. The distribution of the RUM, on the other hand, is equal to the 
DDM distribution, scaled down linearly by time. Thus, the function for the RUM distribution is 
simply the DDM distribution function, divided by t*. (b) In the aDDM, attention toward the other 
alternative leads to a discounting of the valuation by θ (dashed line), and therefore, a slower 
rate of evidence accumulation. The solid line represents accumulated evidence over time while 
attention is devoted to Option i, and the dashed line represents accumulated evidence over time 
while attention is devoted to Option j. In this example, attention is devoted to Option i, then 
Option j, and then Option i again. (c) The final level of the accumulator does not depend on the 
order of attentional shifts (compare to b). Here, attention is devoted to Option i and then Option 
j. The total amount of time spent on each option is the same as in (b), but the order of attentional 
shifts is irrelevant, so the total accumulated evidence is equivalent to (b). 

4 Finite Sample Performance of Estimator  
Consider two alternatives i and j with ratings Xi and Xj, therefore subjective values are 

given by 𝑣" = 𝑋"𝑑. In this case, we can consider estimation of Equation 7 from a standard logit 
regression 

𝑃" = 𝑃𝑟𝑜𝑏c(𝐸"𝑋" − 𝐸B𝑋B)𝑑 + (𝐸B𝑋" − 𝐸"𝑋B)𝛾 > 𝜂" − 𝜂Be,																											(8)  

where 𝜃s can be recovered via 𝜃s = 	 tu
vs
 . 

The valuation can also be alternative-specific provided enough variation over alternatives 
in the dataset, so 𝑣" = 𝑋"𝑑". In this case, the standard logit regression is  

𝑃(𝑖, 𝑡) = 𝑃𝑟𝑜𝑏c𝐸"𝑋"𝑑" − 𝐸B𝑋B𝑑B + 𝐸B𝑋"𝛾" − 𝐸"𝑋B𝛾B > 𝜂" − 𝜂Be,																				(9) 

and 𝜃s" can be recovered via 𝜃s" = 	
tuk
xyk

 . The attentional parameter can be further restricted 
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to be symmetric across alternatives, so 𝜃" = 𝜃B = 𝜃.  

Note that, strictly, the estimation of equations (14) and (15) is mis-specified since the 
random utility error distribution implied by the DDM differs from that used by the Logit (see 
Webb, 2019). However, in the next section, we will demonstrate that the approximation of this 
distribution provided by the Logit model does not appear to bias the resulting model estimates 
meaningfully.  

 
 

4.1 Simulated data 
 

To evaluate our proposed estimation method, we performed a Monte-Carlo parameter 
recovery exercise. The data generating process was the aDDM with the following parameters: d 
∈ {0.00015,0.0002,0.00025} per millisecond, 𝜎  ∈ {0.015, 0.02, 0.025}, θ ∈ {0.1, 0.3, 0.5, 0.7, 
0.9}, Ter ∈ {300, 400, 500} milliseconds. For every combination of these parameter values, 20 
datasets were simulated using the empirical subjective value ratings and gaze patterns from 100 
randomly sampled trials from Krajbich et al. (2010). Therefore, for each value of θ there were 
540 datasets, each with 100 simulated trials. We then recovered estimates of θ for each dataset 
using a standard Logit estimation of the RUM from Equation 8. 

 
To evaluate the grid-search method, we followed standard practice and fit each of the 

datasets using maximum simulated likelihood estimation (MSLE). This method is quite involved 
and requires simulating a large number of sample datasets for each set of parameters in the grid. 
We bin the simulations and the datasets in the same way. We first separate the trials from the 
dataset according to the absolute difference in rating between the two options, the decision made, 
and the direction of the final fixation. Next, we bin the trials according to RTs, using a median 
split for decisions where the lower-rated option was chosen and with quantile bins of {0.1, 0.3, 
0.5, 0.7, 0.9} for decisions where the weakly higher-rated option was chosen.  

 
To implement the grid-search, we used three iterations of 5,000 random-grid parameter 

combinations each (Bergstra & Bengio, 2012), with 10 simulations per trial. The range of 
parameters for the first iteration was d ∈ [0.0001,0.0003] per millisecond, 𝜎 ∈ [0.01, 0.03], θ ∈ 
[0, 1], Ter ∈ [200, 600] milliseconds. The second and third iterations’ parameter ranges were 
based on the top 5% best-fitting model parameters of the previous iterations (according to log 
likelihood). We adjusted these ranges according to a dummy parameter, 𝜉, in order to correct for 
artificial contraction of the parameter range over time (e.g. if 𝜉’s upper value decreased by 1% of 
its initial range, we increased the upper value on each of the parameters by 1% of their respective 
ranges, with the initial upper values as an upper bound).  
 

Our results demonstrate that the RUM estimates of θ appear to be unbiased and estimated 
relatively precisely (Figure 2). This is in contrast to estimates of the aDDM using the grid search 
method. In particular, there is a stark improvement both in the mean estimates and an improved 
standard deviation. Computation time of the RUM is negligible at 0.03 seconds per dataset, 
while the grid search method takes ~2.5 hours per dataset (note: this can be reduced to 10 
minutes per dataset if parallelized on 50 cores). This comparison, while impressive, is actually 
conservative since we chose relatively tight boundaries for the grid search that included the true 



parameter values.  
 

Finally, it is difficult to assess the performance of the grid search method in parameter 
inference because it does not directly yield standard errors of the estimates. Given the 
computational burden of the grid search, even when the grid-search is parallelized over 50 cores, 
a minimal 1000 bootstrap samples would take ~7 days to estimate. The RUM method, however, 
yields standard errors directly with Type 1 errors that are near the expected 0.05 level. 

 
 Clearly, the RUM method is effective and efficient at estimating the degree to which 

attention shapes the choice process. However, it is also beneficial when estimating the rest of the 
parameters, as well. After estimating the attention parameter θ with the RUM method, we used a 
grid search (as described above) to estimate the remaining parameters for each of the 2700 
datasets. Essentially, we fixed θ to be the RUM estimate across all three iterations, and fit the 
remaining parameters.  

 
Because we know the true parameters that generated each of the 2700 datasets, we can 

evaluate the success of each method in identifying these parameters. Indeed, the RUM method 
provides significantly better fits than the traditional grid search, total RUM log likelihood = –
1483267 vs. total grid search log likelihood = –1485244. A Wilcoxon Signed Rank test shows 
that the RUM fits are significantly better, as well, V = 2648900, p < 10-16. At the level of the 
dataset, 68% of the 2700 paired log likelihoods are higher in the RUM method. Moreover, the 
root mean squared error of the RUM method is smaller than that of the grid search method for all 
parameters (d: 3.510x10-5 vs. 3.514x10-5; 𝜎: 2.282x10-3 vs. 2.319x10-3; θ: 0.107 vs. 0.145; Ter: 
99.54 vs. 101.2) and the correlations between true and fitted parameters are higher in the RUM 
method than in the grid search method (d: 0.745 vs. 0.741; 𝜎: 0.882 vs. 0.873; θ: 0.937 vs. 0.874; 
Ter: 0.550 vs. 0.538; each p < 10-15). Overall, estimating θ with the RUM method does not simply 
improve the estimation of θ, it also improves the precision of other estimated parameters and the 
overall goodness-of-fit.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



(a) 

 
(b)         (c) 

 
 
Figure 2: (a) Histograms of the deviations with mean (sd) and (b-c) direct comparisons between 
the recovered θ values and their true values from each of the methods on the 2700 datasets, with 
Type 1 error rates in (b). The RUM method is more precise and less biased than the traditional 
grid search method. 
 
4.2 Real data 

 
To assess the performance of the RUM method on a real (i.e. non-simulated) dataset, we 

also fit the aDDM to the participant-level data from Krajbich et al. (2010). In this study, subjects 
(N = 39) first rated how much they would like to eat 70 food items. Then, they made 100 
incentivized choices between pairs of food items while their eye movements were tracked. We 



used subjects’ self-reported valuations from the rating data (as 𝑋" and 𝑋B) while fitting the 
choice-task data (comprising RTs, choices, and eye movements). We fit both with the traditional 
grid search and the RUM method (estimating θ with the model and then fitting the remaining 
parameters with a grid search). Here, the fit of the RUM and the grid search yielded similar 
values, with correlations of 0.57, 0.74, 0.90, 0.46 for θ, d, 𝜎 , Ter, respectively.  It is also 
reassuring that the median/mean difference between parameter values is very close to zero in 
each case, indicating that the two methods agree in the aggregate as well (Fig. 3).  A major 
advantage of the RUM method is that it estimates θ essentially instantaneously, allowing the 
overall fitting exercise to, again, finish in a fraction of the time of the grid-search method.  
      

 
Figure 3: Histograms of the difference between RUM and grid-search estimated parameters, 
using real data.  Inset numbers refer to Pearson correlation coefficients and p-values. Note: for 
θ, one observation (-20.8) was removed from the graph as an outlier. Coefficients in brackets 
refer to the correlation without the outlier. 
 
 

The RUM method also provides standard errors on θ, which are key for inferential 
statistics (Fig. 4a).  Using the RUM method, we find that 35 out of 39 subjects have θ < 1, with 
26 out of 39 significant at the 0.05 level.  Interestingly, 12 out of 39 subjects (6 significantly) 
have θ < 0, which falls outside of the theoretically predicted range of estimates.  The implication 
of θ < 0 is that while attending to Option i, the accumulator on Option j decreases at a rate 
proportional to its underlying utility. A negative value of θ is typically not allowed by the aDDM 
as it would imply that items that are more highly valued while being attended to are more 



negatively valued while not being attended to. One possibility is that the negative θ estimates are 
due to features of the data that are not captured by the aDDM. For instance, it is possible that 
unattended items leak evidence; leakage is a feature of some other sequential sampling models 
(e.g. Leaky Competing Accumulator; Usher & McClelland, 2001) but has yet to be incorporated 
in the aDDM framework. In the Logit method, a negative θ arises because the Logit places no 
boundaries on the estimate of θ. Such an estimate is precluded by the grid-search approach 
because it simply does not search in this domain of the parameter space (Fig. 4b).  
 

If a researcher so desired, a positivity constraint on θ can simply be added to the 
maximum likelihood procedure used to estimate the Logit model.  This can be accomplished by 
putting positivity constraints on the two parameters (𝛾 and d, where θ = t

v
) estimated via the 

Logit maximum likelihood procedure. The subjects with nonnegative θ in the unconstrained 
regression displayed very little difference between the constrained and unconstrained regressions 
(Mean deviance = 0.018, SE = 0.0075; Pearson’s correlation = 0.99, p < 0.0001). On the other 
hand, the subjects with negative θ in the unconstrained regression were best fit with θ ≈ 0 in the 
constrained regression. Overall, constraining the regression does not change our conclusions 
about the improved estimation of θ with the RUM. 
 
(a)         (b) 

  
 
Figure 4: (a) Inference test of RUM θ estimates. Again, the outlier (-20.7) was removed from the 
graph for clarity. (b) Distribution of θ from the grid search method. 
 

5 Conclusion  
In this paper, we have demonstrated the benefits of applying the RUM to estimate the 

effects of attention on choice. In doing so, we have established that the role of attention in choice 
can be accurately and quickly estimated. We find improvement in parameter recovery using a 
mere fraction of the computational time of existing methods.  Moreover, the RUM rests on a 
well-known, firmly-structured analysis (i.e. a Logit regression), while existing methods are 
plagued by their flexibility and lack of standardization. The binning process, use of eye-tracking 
data, number of simulations, and range of parameter combinations are all left to the discretion of 
the researcher. Finally, parameters estimated via existing methods are not amenable to 



conducting inference tests.  These are all problems the RUM method solves.   
 
There are, of course, limitations to this approach. The effectiveness of the DDM in 

modeling choice behavior is rooted in its capability to make use of RT, in addition to choices. 
However, with the RUM approach, RTs are ignored in the estimation of the attentional parameter 
θ. This could mean that valuable information is lost, but it could also mean that the RUM method 
is more robust to assumptions about other components of the model.  With eye-trackers now 
commercially available for ~$100, and phone manufacturers and retailers deploying mobile eye-
tracking tools, the use of eye-movement data in research will likely soon become commonplace. 
It is therefore important to continue to develop better methods for analyzing that data.  
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