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Abstract

We present a theory of multi-attribute choice founded in the neuroscience of perception. Valuation is 
formed through a series of pairwise, attribute-level comparisons implemented by (divisive) normalization — 
a form of relative value coding observed across sensory modalities and in species ranging from honeybees to 
humans. Such “pairwise normalization” captures a broad range of behavioral regularities in multi-attribute 
choice, including the compromise and asymmetric dominance effects, the diversification bias in allocation 
decisions, and majority-rule preference cycles.
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1. Introduction

Standard choice theories presume that an individual’s valuation of an alternative does not 
depend on the set of alternatives under consideration. However, a large empirical literature has 
revealed several violations of such “context-independence.” For example, simply adding an al-
ternative to a choice set can alter preferences among existing alternatives (see Rieskamp et al., 
2006, for a review). Empirical demonstrations of context effects can be found in both labora-
tory experiments (beginning with Huber et al., 1982, and Simonson, 1989) and in field data (e.g. 
Doyle et al., 1999; Geyskens et al., 2010), and extend to many types of decisions — including 
consumer choice, choices among lotteries, doctors’ prescription decisions, perceptual decisions, 
and mate selection, to name just a few.1

Though less familiar to behavioral researchers, context-independence is also challenged by an 
established neuroscience literature (beginning with Hartline and Wagner, 1952) demonstrating 
that the brain encodes information in relative, not absolute terms. For example, the neural activ-
ity encoding the value of an alternative decreases (indicating a reduced valuation) as the value 
of another alternative rises (Louie et al., 2011; Holper et al., 2017). This pattern of neural activ-
ity is consistent with divisive normalization, a well-documented neural computation that, in its 
simplest conceivable form, merely re-expresses some input value a — which may represent the 
utility of an alternative, or the intensity of sensory stimuli (such as the brightness of a pixel) — 
relative to another input b as a

a+b
(see Rangel and Clithero, 2012; Carandini and Heeger, 2012, 

and Louie et al., 2015, for reviews). Indeed, the prevailing neuroscience literature conceptualizes 
such “division by neurons” as an arithmetic operation that is actually performed in the brain.2

Why would our brains not just encode a independently of b? The reason is thought to stem 
from biological constraints. The brain has a limited number of neurons, each with a bounded 
response range. Thus, information must be compressed within these bounds. A relative value 
encoding is then needed to ensure this compression is well-calibrated to the choice environment 
(a point previously noted in the economics literature by Robson, 2001, and Rayo and Becker, 
2007; also see Netzer, 2009; Woodford, 2012; Robson and Whitehead, 2018, and Frydman and 
Jin, 2020). A relative encoding using the divisive normalization computation has been shown to 
optimally mitigate choice mistakes subject to these biological constraints (Steverson et al., 2019; 
Webb et al., 2020a). Put simply, divisive normalization efficiently facilitates the perception of 
both large and small differences on a common scale — e.g. helping to distinguish “one dollar 
from two dollars and one million dollars from two million dollars” (Carandini and Heeger, 2012).

In this paper, we explore whether divisive normalization — an inherently context-dependent 
computation — might relate to context-dependent behavior. To do so, we adapt the “ a

a+b
” di-

visive normalization model to the multi-attribute choice setting where behavioral research on 
context-dependence is mainly focused. Let x be an alternative with x1, . . . , xN denoting its N
attribute values. These may be observable values or utility-transformed values, as discussed in 
Section 3.1. The decision-maker’s valuation of x according to our basic pairwise normalization 
(PN) model is normalized relative to other alternatives in the choice set X as:

1 For examples, see Huber et al. (2014), Soltani et al. (2012), Schwartz and Chapman (1999), Trueblood et al. (2013), 
and Lea and Ryan (2015).

2 See Carandini and Heeger (1994), who coined the phrase in quotes, as well as related work by Wilson et al. (2012). 
At the neurocomputational level, the divisive functional form can be derived as the equilibrium solution to the dynamics 
that govern neural activity in a stylized neural circuit (Louie et al., 2014).
2
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V (x;X) =
N∑

n=1

∑
y∈X\x

xn

xn+yn
.

This formulation is “pairwise” in the sense that each term reflects an attribute-level comparison 
(normalization) of x to some other alternative y. Pairwise comparisons have long been a feature of 
multi-attribute choice theories (e.g. Tversky and Simonson, 1993) and have substantial empirical 
support from eye-tracking research in multi-attribute choice environments; in one such study, 
Noguchi and Stewart (2014) find that “alternatives are repeatedly compared in pairs on single 
dimensions.”3

Our modeling approach demonstrates how neuroscience may prove useful to economists as a 
source of candidate functional form representations to consider in model selection (as suggested 
by Bernheim, 2009). Arguably the simplest, standard multi-attribute choice model is an additive 
model, V (x) = ∑

n xn. This additive model provides a common foundation for many leading 
multi-attribute choice theories that address context-dependence (e.g. Tversky and Simonson, 
1993; Kivetz et al., 2004a; Koszegi and Szeidl, 2013; Bordalo et al., 2013; and Bushong et al., 
2019). These theories typically replace each term in the summation with a function of xn that also 
depends on the set of alternatives. Similarly, our theory modifies the additive model by apply-
ing pairwise normalization to each attribute value (effectively replacing xn with 

∑
y∈X\x

xn

xn+yn
). 

This formalizes pairwise normalization in its most elemental form, isolated from other factors 
that may influence choice, and with minimal parametric freedom. Despite its simplicity, the mod-
el’s predictions capture a broad range of context-dependent behavioral regularities that are only 
partially captured by prevailing multi-attribute choice theories. These predictions are summa-
rized in Table 1, where ‘Y’ indicates that the model robustly captures the associated behavior 
(i.e. never predicts the opposite or no effect under conditions for which it would be expected), 
‘S’ means the model sometimes predicts the behavior and sometimes predicts the opposite effect, 
and ‘N’ means the model does not predict the behavior.4

The rest of this paper proceeds as follows. Section 2 provides background on the neurobio-
logical basis of our model and the behavioral regularities that it captures. Section 3 presents the 
theoretical model. Section 4 examines how a preference between two alternatives can be affected 
by a third alternative, and relates these effects to the notion advanced by Tversky and Russo 
(1969) and Natenzon (2019) that similar alternatives are “easy to compare.” Section 5 considers 
choices among alternatives defined on three dimensions. Section 6 considers various allocation 
problems. Section 7 explores a generalization of the model. Section 8 clarifies the behavioral role 
of pairwise comparisons in our model and elaborates on the varying representations of attribute-
level comparisons in the relevant theoretical literature.

3 Also see Russo and Dosher (1983), Arieli et al. (2011), Noguchi and Stewart (2018), Turner et al. (2017), as well as 
Russo and Rosen (1975), who emphasize that the use of pairwise comparisons may stem from cognitive constraints, as 
even ternary comparisons (which they observed roughly 2 percent as often as pairwise comparisons) can stretch working 
memory to its limits. That said, whether individuals use pairwise comparisons can be sensitive to various aspects of 
the choice environment, including the manner in which alternatives are presented and the cost of learning attribute 
information (see, for example, Payne et al., 1993, and Reeck et al., 2017). Our model is only intended to explain behavior 
in situations where individuals do use pairwise comparisons. For a lengthier discussion of pairwise comparisons in 
relation to other theoretical representations of attribute-level comparisons, see Section 8.

4 Appendix C provides detailed explanations of how each model’s predictions were classified in Table 1. Additional 
empirical tests of pairwise normalization are reported by Sullivan et al. (2019) and Dumbalska et al. (2020).
3
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Table 1
Behavioral patterns generated by pairwise normalization*.
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...Decoy-Range Effect Y S Y Y Y N

(III) Relative Difference Effect Y S N N N N

(IV) Majority-Rule Pref. Cycles Y S Y Y - N

(V) Splitting Bias Y S Y Y - N

(VI) Alignability Effect Y S Y Y - N

(VII) Diversification Bias Y S N N N N

(VIII) Feature Bias Y Y N N S N

Key behavioral regularities predicted by the basic PN model as compared to several prevailing multi-attribute choice 
theories. Here, ‘-’ means the model’s predictions cannot be classified. The ‘Y,’ ‘S,’ and ‘N’ classifications are defined in 
the text. See Appendix C for detailed explanations and Fig. 2 for illustrations of items (I) and (II).
* This table only includes theories that are directly comparable to the basic PN model in that the domains of their analyses 
have sufficient overlap with ours. Notable models addressing the compromise and/or dominance effects in somewhat 
different domains include Kamenica’s (2008) contextual inference theory (which, unlike the theories listed above, models 
a market with both consumers and a firm), De Clippel and Eliaz’s (2012) dual-self intrapersonal bargaining theory, Ok 
et al.’s (2015) endogenous reference point theory, Guo’s (2016) contextual deliberation theory, and Natenzon’s (2019)
Bayesian probit model. In Appendix C, we elaborate on how these models differ. That said, a static version of Koszegi 
and Szeidl’s (2013) dynamic ‘focusing’ theory is directly comparable to our model. While this theory does not seek to 
address the context-dependent phenomena addressed by other theories, for completeness we derive its predictions (all 
‘N’) for each item in Appendix C.

2. Additional background

2.1. Review of divisive normalization

The divisive normalization computation was initially conceived as an explanation for the non-
linear responses of cortical neurons to properties of visual stimuli such as contrast and brightness 
(Heeger, 1992; Carandini et al., 1997). The computation serves as a form of gain control, re-
scaling its inputs into a bounded output range, and has been shown to yield an efficient coding 
4
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of visual information in a constrained neural system.5 Divisive normalization has since been ob-
served in the neural activity of other sensory systems including olfaction and auditory perception 
(e.g. Olsen et al., 2010; Rabinowitz et al., 2011), as well as multi-sensory integration (Ohshiro 
et al., 2011). Even more recently, divisive normalization has been observed in regions of the pri-
mate brain thought to guide value-based decision-making (e.g. Louie et al., 2014; Yamada et al., 
2018; Zimmermann et al., 2018) and the comparison of attribute values in multi-attribute choice 
(Hunt et al., 2014).

Complementing the neural evidence, divisive normalization has been shown to predict percep-
tual and value-based judgments (e.g. Xing and Heeger, 2001; Furl, 2016), as well as empirically-
observed aspects of choice behavior, particularly as it relates to variability in choice and viola-
tions of the axiom of Independence of Irrelevant Alternatives (e.g. Louie et al., 2013; Itthipuripat 
et al., 2015; Khaw et al., 2017; Webb et al., 2020a, 2020b). From a normative standpoint, Stev-
erson et al. (2019) demonstrate that divisive normalization optimizes the tradeoff between the 
cost of stochastic choice errors and information processing costs (modeled through Shannon En-
tropy) within a rational inattention framework. Unlike the present study, however, these previous 
behavioral investigations of divisive normalization have focused on choice environments where 
alternatives are represented by a single, integrated value, as opposed to multiple attribute val-
ues.6 It has therefore remained an open question whether divisive normalization — an inherently 
context-dependent computation — might explain the patterns of context-dependent behavior in 
multi-attribute choice settings where behavioral research on context-dependence has primarily 
focused.

A distinct but related notion of “range normalization” has been applied to two-attribute choice 
(Soltani et al., 2012), and its behavioral predictions are shown in Table 1. In its simplest form, 
the range normalization computation expresses the value of a relative to a set of reference values 
as a

amax−amin
, so that a scales linearly between the maximum (amax) and minimum (amin) values 

in the set. Range normalization was originally proposed to account for evidence that the neural 
response to a choice alternative varies with the range of values among all available alternatives 
(Padoa-Schioppa, 2009), though more recent studies suggest this response is not strictly linear 
(Rustichini et al., 2017). While range-dependence is undoubtedly a feature of neural processing, 
it can also arise from other computational approaches, including those founded on the principle 
that neural processing resources should be allocated to prioritize the ability to distinguish stim-
uli that are encountered more frequently (Rayo and Becker, 2007; Woodford, 2012; Robson and 
Whitehead, 2018; Frydman and Jin, 2020). As shown in Appendix B, (pairwise) divisive normal-

5 See, for example, Schwartz and Simoncelli (2001), Wainwright et al. (2002), Sinz and Bethge (2013), and Qamar et 
al. (2013). Efficiency in sensory coding, dating back to Barlow (1961), is defined as the reduction of mutual information 
in the activity of two neurons. In visual processing, neural activity tends to be correlated for a simple reason: stimuli 
(photons) from nearby regions of visual space tend to be correlated. By scaling the activity of a neuron in relation to the 
activity of a neighboring neuron, divisive normalization reduces these correlations. In image compression, for example, 
an algorithm based on divisive normalization outperforms the standard JPEG and JPEG2000 algorithms (Ballé et al., 
2017).

6 Another difference between our model and previous work is that we implement a pairwise form of divisive normal-
ization, as opposed to normalizing with respect to the sum of all relevant values (e.g. a

a+b
+ a

a+c instead of a
a+b+c

). That 
said, the simple “ a

a+b+c
” computation is considered in Section 8.1, though it does not fare well in explaining observed 

multi-attribute choice behavior (e.g. predicting the opposite of the compromise and dominance effects). More elaborate 
forms of this computation with richer empirical properties are examined by Daviet (2018) and Dumbalska et al. (2020). 
See Webb et al. (2020a) for a discussion of why these two different forms of normalization might arise at different stages 
of the choice process in the human brain.
5
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ization can similarly adapt to a uni-modal distribution of stimuli and accommodate behavioral 
evidence of range-dependence.

2.2. Review of behavioral patterns in Table 1

(I) Compromise Effect. The ‘compromise effect’ refers to the tendency for decision-makers to 
show a stronger preference for an alternative if it is presented as the middle option on each di-
mension (Simonson, 1989; Geyskens et al., 2010). For example, if car A is safer but less efficient 
than car B, someone who chooses A to B in binary choice may instead choose B when a third 
car C is included that is even less safe and more efficient than B (see Fig. 1).

Fuel Efficiency

Safety

A

B

CDS

DW

While car A may be chosen over car B in binary choice, car B may 
be chosen with car C in the choice set, reflecting a compromise 
effect, or with some car D, whether weakly (DW) or strictly (DS) 
dominated by car B, reflecting a dominance effect.

Fig. 1. Illustration of compromise and dominance effects.

(II) Dominance Effect. The ‘(asymmetric) dominance effect,’ also known as the ‘attraction’ 
or ‘decoy’ effect, refers to the tendency to show a stronger preference for an alternative when 
presented with a ‘decoy’ that is worse on each dimension (e.g. Huber et al., 1982; Doyle et al., 
1999). Though sometimes demonstrated with weakly-dominated decoys that match the dominant 
alternative on its weaker attribute (e.g. Kivetz et al.’s, 2004b, economist subscription study), the 
dominance effect appears stronger when the range on this dimension is expanded (Huber et 
al., 1982; Soltani et al., 2012; Dumbalska et al., 2020). This ‘decoy-range effect’ suggests a 
preference reversal from car A to car B is more likely with the strictly dominated decoy DS than 
with the weakly dominated DW.

(III) Relative Difference Effect. The ‘relative difference effect’ refers to the tendency to treat 
a difference between small values as if it were greater than an equal-sized difference between 
large values. For example, people are often willing to drive twenty minutes to save $5 on a $15 
calculator, but not to save $5 on a $125 jacket (Kahneman and Tversky, 1984) — a finding that 
has since been confirmed and generalized (see, for example, Mowen and Mowen, 1986, and 
Frisch, 1993, as well as Azar, 2008, for a more extensive review).

(IV) Majority-Rule Preference Cycles. Suppose each of three potential alternatives is best on 
one dimension, second best on another, and worst on a third as follows:

Attribute 1 Attribute 2 Attribute 3

Alternative A Best Middle Worst
Alternative B Middle Worst Best
Alternative C Worst Best Middle
6
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As first shown by May (1954), binary choices among three such alternatives often exhibit a 
‘majority-rule preference cycle’ (e.g. A preferred to B, B to C, yet C to A) whereby each alter-
native is preferred to that for which it is better on two of three attributes.7

(V) Splitting Bias. The ‘splitting bias’ refers to the tendency to place more (cumulative) weight 
on an attribute when it is split into two subattributes. As one example from Weber et al.’s (1988)
study, job applicants weighted “income” of a potential job more heavily if the attribute was 
decomposed into “starting salary” and “future salary increases.”8

(VI) Alignability Effect. The ‘alignability effect’ refers to the tendency to place more weight 
on an attribute that is ‘alignable’ in the sense that it is present (though not necessarily equal) for 
all alternatives (Markman and Medin, 1995; Zhang and Markman, 1998; Gourville and Soman, 
2005). For example, when considering a 1000-watt microwave or a 1100-watt microwave, one 
of which has a moisture sensor and the other an adjustable-speed turntable, the alignability ef-
fect implies that the wattage difference may be overweighted relative to the other, nonalignable 
features.9

(VII) Diversification Bias. The ‘diversification bias’ refers to the tendency to dispropor-
tionately favor equal allocations of an asset or resource across its components. For instance, 
trick-or-treaters often select a mixed bundle with two different candy bars over a bundle with 
two of the same kind, despite selecting the same kind of candy bar in two sequential choices 
(Read and Loewenstein, 1995). Analogously, diversified gambles are often preferred to undiver-
sified gambles that stochastically dominate the former (Rubinstein, 2002), while investors often 
favor savings plans that allocate contributions equally across possible funds (Benartzi and Thaler, 
2001; Bardolet et al., 2007).10

(VIII) Feature Bias. The ‘(extra) feature bias’ refers to the tendency to overvalue products 
with the most features. For example, demand for a video game rises substantially after the de-
velopment of a new “button” or “scrollbar” control, despite buyers’ negligible usage of the new 
feature (Meyer et al., 2008), while buyers commonly report dissatisfaction, stress, and anxiety 
with many-feature products after purchase (Thompson et al., 2005; Mick and Fournier, 1998). 
Supply-side responses to the feature bias appear to be common in light of the widely-noted pro-
liferation of products with an excessive number of features — a trend known as “feature bloat” 
or “feature creep” (Thompson and Norton, 2011).

7 In May’s experiment, 17 of 62 subjects exhibited this preference ordering among hypothetical spouses, while no 
subjects exhibited the opposite ‘minority-rule’ cycle. In a recent study with alternatives designed to put subjects on the 
cusp of indifference, Tsetsos et al. (2016) show that majority-rule preference cycles can even be more common than 
transitive preferences. Also see Russo and Dosher (1983) and Zhang et al. (2006) for similar evidence.

8 See Weber and Borcherding (1993) for a brief review of this literature, as well as Jacobi and Hobbs (2007) and 
Hamalainen and Alaja (2008) for more recent evidence. Two direct analogs (or special cases) of the splitting bias are the 
‘event-splitting’ (or ‘coalescing’) effect, which refers to the tendency to value a probabilistic reward more if the event 
for which the reward is attained is described as two sub-events (Starmer and Sugden, 1993; Humphrey, 1995; Birnbaum 
and Bahra, 2007), and the ‘part-whole bias,’ which refers to the tendency to value a good more when its components are 
evaluated separately than when evaluated holistically (Kahneman and Knetsch, 1992; Bateman et al., 1997).

9 Similarly, individuals tend to weight alignable attributes more heavily when alternatives are evaluated jointly rather 
than separately. For example, Hsee et al. (1999) find that a complete 24-piece dinnerware set is often rated more favorably 
than an incomplete 31-piece set when the sets are separately rated, but not when they are jointly rated.
10 As noted in these studies, investors favoring equal allocations across funds will end up investing more (or less) in 
stocks than in bonds simply because the available plans happen to include a greater (smaller) number of stock funds than 
bond funds.
7
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3. Basic theoretical model

The basic PN model is cast in a standard multi-attribute choice setting, featuring a single 
decision-maker (DM) who faces a choice set X. Each alternative x ∈ RN+ is defined on N > 0
attribute dimensions, where xn ≥ 0 denotes x’s unnormalized attribute value on dimension n, 
with xn = 0 for the case in which x provides nothing on dimension n.11 While we primarily 
interpret each xn as the utility-transformed value of x on dimension n, these attribute values can 
alternatively be thought of as observable values (with little bearing on our results). The DM’s 
valuation of x is given by:

V (x;X) =
N∑

n=1

∑
y∈X\x

xn

xn+yn
, (1)

where the DM chooses x from X if V (x; X) > V (y; X) for all y ∈ X\x, and is indifferent between 
x and y if V (x; X) = V (y; X). For ease of exposition, whenever we specify that either x or y is 
chosen from a choice set that includes both alternatives, it will be implicit that the DM is not
indifferent (unless otherwise stated). In addition, since xn

xn+yn
is undefined if xn = yn = 0 (a case 

that will not be relevant to our analysis), we assume that, for all n ≤ N , there is at most one x ∈ X

with xn = 0.
The valuation in (1) can be thought of as arising from a series of pairwise comparisons, where 

each of x’s attribute values are normalized in relation to the corresponding attribute value of each 
other alternative y ∈ X \ x. That is, when ‘compared’ to y, the normalized value of x on dimen-
sion n is simply xn

xn+yn
, while the overall valuation of x is the sum of all such terms.12 Here it 

is implicit that the DM attends to all attributes of all alternatives when computing V (x; X).13 In 
a setting where there are too many attributes and/or alternatives to realistically attend to all at-
tributes of all alternatives, X and n = 1, . . . , N could instead represent the subsets of alternatives 
and attributes that are attended to (e.g. Noguchi and Stewart, 2018), though our model is agnostic 
as to how attention would be allocated in such environments.

We begin with the model in (1) — which does not entail any additional parameters in relation 
to the standard additive model, V +(x) = ∑

n xn — to provide a clear illustration of the behavioral 
consequences of pairwise normalization in its most elemental form. Notably, the basic PN model 
lacks additional degrees of freedom found in prevailing multi-attribute choice models that either 

11 While this restriction implies a cardinal scale, the model is invariant to the rescaling of attribute values by a positive 
constant (since k·a

k·a+k·b = a
a+b

).
12 Note, unnormalized attribute values are separable across dimensions in that the total valuation V (x, X) is the sum 
(over n) of the attribute-level valuations (each 

∑
y

xn
xn+yn

). This assumption aligns with additive separability assumptions 
throughout the theoretical literature (e.g. Tversky and Simonson, 1993; Bordalo et al., 2013; Koszegi and Szeidl, 2013; 
Bushong et al., 2019), and allows us to consider the standard additive model, V +(x) = ∑

n xn , as a benchmark in 
the absence of pairwise normalization (V + is also typically regarded as a candidate for representing welfare, but this 
interpretation is not necessary for our analysis). Also note, the model would imply equivalent choice behavior if the right 
side of (1) was multiplied by 1

||X||−1 , in which case V (x; X) would reflect the average (rather than the total) valuation of 
x arising from pairwise comparisons to each of the ||X|| − 1 other alternatives in the choice set. Furthermore, the model 
can readily accommodate an attribute, such as price, for which larger values are less desirable by subtracting (instead of 
adding) the normalized attribute value.
13 This does not prevent the model from addressing the context-dependent behaviors described in Section 2.2. For exam-
ple, in Noguchi and Stewart’s (2014) analysis of the dominance and compromise effects, all attributes of all alternatives 
are typically attended to in two-attribute, three-alternative choice sets.
8
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use general attribute weighting functions or parameterized functional forms (see Section 8 and 
Appendix C). Of course, the broader use of this (or any other) functional-form model that does 
not add parameters to the standard additive model will be limited by its rigidity. We therefore 
consider an extension of the model with one additional parameter in Section 7, while Daviet and 
Webb (2020) propose a parametric specification of subjective attributes for empirical analysis.

3.1. Attribute values: units and observation

While each xn may be an observable value in a specific dimension, we primarily interpret xn

as the utility-transformed value of alternative x on attribute n. Other theories often make this 
more explicit by expressing attribute values through utility functions. Importantly, the behavioral 
propositions of the model do not require attribute values to be fully observable. The propositions 
do, however, take as given the DM’s ranking of alternatives on each dimension.14 For an attribute 
that is observed as a numerical consumption level, these rankings would naturally be inferred 
from the rankings of the observed consumption levels. For non-numerical attributes, the rankings 
of attribute values are typically considered self-evident in motivating behavioral studies. As one 
example, in Weber et al.’s (1988) study of the splitting bias, subjects presumably favored “very 
high job security” over a “very high risk of losing the job” in their evaluations of hypothetical 
jobs. In cases where they are not so obvious, these rankings may be elicited by offering binary 
choices among alternatives that differ solely on this dimension.

3.2. Preliminary analysis: binary choice with two attributes

Our analysis of the basic PN model first considers two-attribute binary choice. In this setting, 
the DM’s choice can be represented by a multiplicative model, V CD(x) = x1x2, reminiscent of 
symmetric Cobb-Douglas preferences (with attribute values as inputs).

Observation 1. Given N = 2, (1) implies V (x; {x, y}) − V (y; {x, y}) = 2(x1x2−y1y2)
(x1+y1)(x2+y2)

. Therefore 
the DM chooses x from X = {x, y} if and only if x1x2 > y1y2.

Much of our subsequent analysis builds on the two-attribute binary-choice problem addressed 
in Observation 1. Except where otherwise noted, we will assume that x is stronger on the first 
attribute and y is stronger on the second, x1 > y1 and x2 < y2, ensuring the choice between x
and y is nontrivial. It will also be useful to work from a benchmark of binary-choice indifference 
between x and y, as in the next result.

Proposition 1. Suppose the DM is indifferent between x = (x1, x2) and y = (y1, y2) with X =
{x, y}. Then, given x′ = (x1, x2 + k) and y′ = (y1, y2 + k) with k > 0, the DM chooses x′ from 
X = {x′, y′}.

14 Some propositions will feature conditions on attribute values besides those that specify the DM’s rankings of al-
ternatives on a given dimension. These additional conditions all serve the same general purpose: to ensure that the 
unnormalized value of a given “entity” is invariant to how it is framed or otherwise represented (in terms of the al-
ternative and/or attributes on which it is expressed). Appendix B.7 presents alternate versions of our main behavioral 
propositions in which the original conditions on attribute values are instead placed on observable consumption levels, 
and provides a detailed summary of the additional conditions mentioned above.
9
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Proof. From Observation 1, x′ is chosen from X = {x′, y′} if and only if x1(x2 +k) > y1(y2 +k). 
Noting x1x2 = y1y2 given binary-choice indifference between x and y, this inequality reduces to 
x1k > y1k, which must hold since x1 > y1 and k > 0. �

Identical improvements to x and y on the same dimension (formalized as equal increases in 
their unnormalized attribute values) therefore break the DM’s initial indifference in favor of the 
alternative that is weaker on that dimension. This captures previously-cited evidence of the rel-
ative difference effect.15 In contrast, most prevailing theories predict that the DM would remain 
indifferent. The exception is Bordalo et al.’s (2013) theory, which allows the DM’s indifference 
to break in either direction, depending on a variety of factors such as the extent to which the 
alternatives are improved (i.e. the magnitude of k > 0, in our notation; see Appendix C.3 for 
details).

To aid our interpretation of Proposition 1 (and several later results), we define

�(a,b) ≡
∣∣∣ a−b
a+b

∣∣∣, (2)

which provides a metric of the perceptual “distance” or contrast between two values, after each 
has been normalized in relation to the other.16

Observation 2. Given N = 2, (1) implies V (x; {x, y}) − V (y; {x, y}) = �(x1, y1) − �(y2, x2). 
Therefore the DM chooses x from X = {x, y} if and only if �(x1, y1) > �(y2, x2).

Thus, for our two-attribute binary-choice problem, x will be chosen over y if and only if 
there is greater contrast on the first dimension (where x has an advantage) than on the second 
dimension (where y has an advantage).

Given this link between choice and contrast, Proposition 1 can be understood as arising 
from a key property of �, diminishing sensitivity, whereby increasing two input values by the 
same amount decreases the perceived distance between them: in this case, �(y2 + k, x2 + k) <
�(y2, x2). The notion that diminishing sensitivity may be important in understanding percep-
tions of value in multi-attribute choice was previously highlighted by Bordalo et al. (2013).17

Along similar lines, we may also regard Proposition 1 as a choice analog of Weber’s (1834) Law 
of Perception, which describes how increasing the intensities of two stimuli diminishes the per-
ception of their difference — for example, a one-gram difference in the weights of two rocks is 
more easily detected if the rocks weigh 1 gram and 2 grams than if they weigh 101 grams and 
102 grams.

15 Here, the magnitude of k > 0 does not need to be observable, as the analyst only needs to know that x2 and y2 increase 
by the same amount, or equivalently, that the differences on this dimension are the same among the modified alternatives 
and among the original alternatives (y′

2 −x′
2 = y2 −x2 > 0). This condition adheres to standard interpretations of relative 

difference effects, which are considered anomalous precisely because they suggest differential weighting of equal-sized 
differences in value. See Appendix B.7 for another (somewhat trivial) version of Proposition 1, in which the identical 
improvements are represented as equal increases in numerical consumption levels (as opposed to utility-transformed 
values).
16 This definition of � — which parallels the standard conceptualization of contrast in the visual perception literature 
(Carandini and Heeger, 2012) — qualifies as a metric (distance) function because it satisfies: (a) �(a, b) ≥ 0 for all a, b; 
(b) �(a, b) = 0 if and only if a = b; (c) �(a, b) = �(b, a); and (d) �(a, c) ≤ �(a, b) + �(b, c) (this last property, the 
Triangle Inequality, is addressed in Section 5).
17 Since � exhibits “ordering” — i.e. �(a′, b′) > �(a, b) given a′ > a > b > b′ ≥ 0 — in addition to diminishing 
sensitivity, it constitutes a salience function as defined by Bordalo et al. (2013).
10
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4. Adding a third alternative to the choice set

We now examine how a choice between x and y may be impacted by a third alternative z. To 
aid our understanding, let mxy ≡ ( x1+y1

2 , x2+y2
2

)
denote the midpoint between x and y. Noting 

x1
x2

>
m

xy
1

m
xy
2

>
y1
y2

since x is better than y on the first dimension and worse on the second, we will 

say that z is more similar to x than to y if and only if z1
z2

>
m

xy
1

m
xy
2

, in which case z’s attribute values 

are tilted towards x and away from y in relation to mxy.

Lemma 1. Suppose the DM is indifferent between x = (x1, x2) and y = (y1, y2) with X = {x, y}, 
and z is more similar to x than to y. Then:

|V (x;{x, z}) − V (z;{x, z})| ≥ |V (y;{y, z}) − V (z;{y, z})|, (3)

which only binds when both sides are zero.

Proof of Lemma 1. See Appendix.

Given z is more similar to x than to y, and with indifference between x and y in binary choice, 
Lemma 1 indicates that the magnitude of the perceived value difference will be larger between 
z and x than between z and y. In this way, pairwise normalization makes it “easier to com-
pare” more similar alternatives, as proposed by Tversky and Russo (1969) and operationalized 
by Natenzon (2019).

Since the relative ranking of x and y is generally not observed in cases where z is chosen in 
trinary choice, the effect of an inferior z that is not chosen over x and y is of particular interest.18

In such cases, both value differences in (3) would be positive even without taking absolute values. 
Thus, with an inferior z that is more similar to x than to y, and given binary-choice indifference 
between x and y, Lemma 1 implies V (x; {x, z}) − V (z; {x, z}) > V (y; {y, z}) − V (z; {y, z}) > 0, 
which itself is equivalent to V (x; {x, y, z}) > V (y; {x, y, z}), implying the DM would choose x
over y with z in the choice set.19 In effect, through the relative ease of comparing more similar 
alternatives, an inferior z enhances the DM’s perception of x more than it enhances the perception 
of y, causing x to be chosen. This yields the well-known compromise and dominance effects.

Proposition 2. Suppose the DM is indifferent between x = (x1, x2) and y = (y1, y2) with X =
{x, y}. Then the DM chooses x from X = {x, y, z} in each of the following scenarios:

(i) x is a compromise between y and z (i.e. z1 > x1 > y1 and y2 > x2 > z2), and z is not chosen.
(ii) x asymmetrically dominates z �= x (i.e. x1 ≥ z1 > y1 and y2 > x2 ≥ z2).

18 Formally, z is inferior if V (z; X) < V (x′; X) for x′ ∈ {x, y} and X = {x′, z}, meaning x and y are chosen over z in 
binary-choice. In Appendix B.4, we show that, given indifference between x and y in binary choice, z’s status as inferior 
would be the same if it were instead defined in terms of trinary choice with X = {x, y, z}. A stochastic choice variant of 
the “ease of comparison” result is formalized in Appendix B.1.
19 This equivalence follows because V (x′; {x′, z}) = ∑

n
x′
n

x′
n+zn

= 1
2 · ∑

n
2x′

n+zn−zn

x′
n+zn

= 1
2 · ∑

n

( x′
n

x′
n+zn

+ 1 −
zn

x′
n+zn

) = 1
2 (V (x′; {x′, z}) − V (z; {x′, z})) + 1 under (1), along with V (x; {x, y, z}) − V (y; {x, y, z}) = (V (x; {x, y}) +

V (x; {x, z})) − (V (y; {x, y}) + V (y; {y, z})) = V (x; {x, z}) − V (y; {y, z}) given indifference between x and y in binary 
choice.
11
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Each graph shows the effect of z on the relative valuation of x and y, as predicted by the indicated model (note, this 
comparison determines the DM’s choice, as long as z is not chosen from X = {x, y, z}). With one exception (see *), the 
graphs were created using x = (2, 1) and y = (1, 2) as a simple illustration that ensures binary-choice indifference in all 
models considered. Additional parametric and functional form restrictions needed to create the graphs are described in 
Appendix D.

* While Bordalo et al.’s (2013) model can be analyzed for alternatives defined by two quality attributes (Bordalo et 
al., 2013, Appendix B), it is primarily analyzed for alternatives defined by their price and a single quality attribute. For 
this reason, both model variations are considered here, where we use x = (px, qx) = (1, 1) and y = (py, qy) = (2, 2) to 
create the ‘price-quality’ graph.

Fig. 2. The effect of adding z to the choice set. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Proof of Proposition 2. See Appendix.

To understand how pairwise normalization generates the compromise effect in part (i) of 
Proposition 2, consider the top-left graph in Fig. 2. If z is on the same side of the dashed line 
projecting from the origin as x, it is more similar to x than to y. This must be true in cases where 
z makes x a compromise between y and z, because such a z would be below and to the right 
of x; we can also algebraically verify that z must be more similar to x than to y from the fact 
12
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that z1 > x1 and z2 < x2 imply z1
z2

> x1
x2

>
m

xy
1

m
xy
2

. Suppose, in addition, z is inferior — i.e. below 

the dashed, binary-choice indifference curve on which x and y reside, as in the point labeled 
‘C’ — and hence not chosen in trinary choice. Then z will enhance the DM’s perception of the 
compromise alternative x more than it enhances the perception of y, due to the relative ease of 
comparing more similar alternatives (Lemma 1). This leads the DM to choose x with z in the 
choice set.

Likewise, if z is asymmetrically dominated by x (e.g. the point labeled ‘Ds’), it too must 
be more similar to x than to y — since z1 > y1 and z2 < x2 imply z1

z2
>

y1
x2

= y1(x2+y2)
x2(x2+y2)

=
y1x2+y1y2
x2(x2+y2)

= y1x2+x1x2
x2(x2+y2)

= x2(x1+y1)
x2(x2+y2)

= x1+y1
x2+y2

= m
xy
1

m
xy
2

, given x1x2 = y1y2 with binary-choice indif-

ference (Observation 1) — and inferior to both. Again, z enhances the perception of the more 
similar (and in this case, dominant) alternative x more than it enhances the perception of y, lead-
ing the DM to choose x. The dominance effect, as captured in part (ii) of Proposition 2, thus 
arises through the same ease-of-comparison property as the compromise effect. As illustrated in 
Fig. 2, Tversky and Simonson’s (1993) model likewise captures the compromise effect and the 
dominance effect with both weakly and strictly dominated decoys, while the remaining models 
do not.

4.1. The “strength” of the compromise and dominance effects

Our next result describes how changing z’s position in attribute space can strengthen or 
weaken its effect on the DM’s choice between x and y.

Proposition 3. Suppose the DM is indifferent between x = (x1, x2) and y = (y1, y2) with X =
{x, y, z}, but chooses y from X = {x, y}. Then:

(i) if x1 > z1 = z′
1 > y1 and y2 > x2 ≥ z2 > z′

2, the DM chooses x from X = {x, y, z′};
(ii) if z1 > x1 > z′

1 > y1 and y2 > x2 > z2 = z′
2, the DM chooses x from X = {x, y, z′};

(iii) if x1 > z1 > y1 = z′
1 and y2 > x2 > z2 = z′

2, the DM chooses y from X = {x, y, z′}.

Proof of Proposition 3. Using V (x; {x, y, z}) = V (y; {x, y, z}) and (1), X = {x, y, z′} implies 

V (x; X) − V (y; X) = (z2−z′
2)(y2−x2)(x2y2−z2z

′
2)

(x2+z2)(x2+z′
2)(y2+z2)(y2+z′

2)
> 0 in (i), V (x; X) − V (y; X) =

(z1−z′
1)(x1−y1)(z1z

′
1−x1y1)

(x1+z1)(x1+z′
1)(y1+z1)(y1+z′

1)
> 0 in (ii), and V (y; X) − V (x; X) = (z1−y1)y1(x1−y1)(x1−z1)

2y1(y1+z1)(x1+y1)(x1+z1)
> 0 in 

(iii). Since these expressions are positive (given the indicated restrictions), x is chosen from X in 
(i) and (ii), while y is chosen from X in (iii). �

Part (i) of Proposition 3 first considers a variation of the dominance effect whereby the DM 
chooses y over x in binary choice, but becomes indifferent when an asymmetrically dominated 
alternative z is included in the choice set. A modified decoy z′, which is worse than z on its second 
dimension (and the same on its first dimension), will then create a stronger dominance effect as 
x becomes strictly favored (and chosen) over y with z′ in the choice set. This prediction fits with 
evidence of a decoy-range effect (see Section 2.2), in which the dominance effect becomes more 
prominent when the decoy becomes worse on the dimension for which it is the weakest.

Part (ii) analogously considers a variation of the compromise effect whereby the DM again 
chooses y over x in binary choice, but is indifferent when the choice set includes a third alterna-
tive z that, in this case, makes x a compromise (i.e. intermediate on both dimensions). In turn, 
13
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The graph on left re-illustrates the predicted effect of z on the relative valuations of x and y, as originally 
shown in Fig. 2, except here the regions are shaded based on the magnitude of the normalized value difference 
between x and y with z in the choice set. The inset on right provides a visualization of choice data from 
Soltani et al.’s (2012) experiment, showing z’s effect on the relative likelihood of choosing the more similar 
alternative x relative to the less similar alternative y (which were calibrated to reside on the same binary-
choice indifference curve). The choice data at each location (pooled over all subjects) is smoothed using a 
locally-weighted linear regression with smoothing parameter 1/3.

Fig. 3. The “strength” of z’s effect.

an asymmetrically dominated decoy z′, which is the same as z on the second dimension but now 
worse than both x and z on the first dimension, causes the DM to choose x over y. In this sense, 
the model predicts that the dominance effect is “stronger” than the compromise effect. While 
additional tests would be useful, a recent experiment by Noguchi and Stewart (2018) provides 
evidence for this prediction.

Part (iii) of Proposition 3 then considers the variation of the dominance effect from part (i), 
whereby the addition of an asymmetrically dominated decoy z makes the DM indifferent between 
x and y in trinary choice, despite choosing y over x in binary choice. A modified decoy z′ is then 
considered, which is equal to y on its first dimension. With z′ now weakly dominated by y
(and still strictly dominated by x), the DM reverts to choosing y in trinary choice. The effect 
of this “symmetrically dominated” decoy is therefore weaker than the dominance effect, which 
is broadly consistent with experimental evidence from Wedell (1991). That said, Wedell does 
not observe a significant effect of adding a symmetrically dominated alternative of this form, as 
would be predicted by Tversky and Simonson’s (1993) model, while the basic PN model still 
predicts a shift in the DM’s valuation in favor of x relative to y.

To help illustrate how z’s location in attribute space determines the direction and extent to 
which it affects the DM’s perception of x and y, Fig. 3 reproduces the graph in Fig. 2 depicting 
the predictions of the basic PN model, except the regions are now shaded based on the magnitude 
of the difference between the normalized valuations of x and y in trinary choice. The gray arrows 
indicate that an asymmetrically-dominated decoy zD enhances the perception of x more than it 
enhances the perception of y, but this effect weakens as zD

2 increases — effectively shrinking 
the range (y2 − zD

2 ) of values on this dimension, as in the decoy-range effect — and also as zD
1

increases to a point where x no longer dominates zD, becoming a compromise instead.
14
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For comparison, the inset in Fig. 3 depicts the estimated difference in the choice probabilities 
of x and y as a function of z’s location in attribute space using choice data from Soltani et al. 
(2012). In this experiment, the locations of x and y were chosen so that each subject was just 
indifferent between them in binary choice. The introduction of z necessarily revealed subjects’ 
rankings among x and y because z was only a “phantom” alternative that was presented with 
x and y, but could not actually be chosen. While only suggestive, the observed patterns align 
with the model’s predictions that increasing zD

1 and zD
2 would weaken the effect of zD in shifting 

perceptions in favor of x relative to y.20 The phantom design also allows us to consider the effect 
of a superior z, which would presumably be chosen over x and y if it were feasible. In this case, 
subjects’ perceptions appear to shift in favor of y instead of x (see the blue region above and to 
the right of x), which is qualitatively consistent with the prediction of the basic PN model. This 
prediction, as well as the effects of changing zD

1 and zD
2 , is also generated by the multi-attribute 

choice models of Soltani et al. (2012) and Bushong et al. (2019).
As a caveat to this discussion, it is important to note a discrepancy in the representation of 

attributes, as the choice alternatives in Soltani et al.’s experiment were lotteries defined by the 
probability of winning a monetary reward and the amount of the reward. Considering these at-
tributes are not separable, it is reasonable to question the value of using this type of lottery data to 
test the predictions of multi-attribute choice models — including our model, the aforementioned 
models of Soltani et al. (2012) and Bushong et al. (2019), and the other models in Table 1 — that 
assume separability (see footnote 12).

5. Binary choice with three attributes

So far, our analysis has only considered choices with alternatives defined on two attribute 
dimensions. We now consider binary choices among alternatives that vary on three attribute 
dimensions. Our first such example shows that, with three-attribute choice alternatives, choices 
can now be intransitive.

Example 1. Suppose x = (a, b, c), x′ = (b, c, a), and x′′ = (c, a, b) with a > b > c. Then:

V (x;{x,x′}) − V (x′;{x,x′}) = V (x′;{x′,x′′}) − V (x′′;{x′,x′′})
= V (x′′;{x,x′′}) − V (x;{x,x′′}) = �(a,b) + �(b, c) − �(a, c) = (a−b)(b−c)(a−c)

(a+b)(b+c)(a+c)
> 0.

Thus, the DM chooses x from X = {x, x′}, x′ from X = {x′, x′′}, and x′′ from X = {x, x′′}.

In Example 1, x, x′, and x′′ satisfy a ‘cyclical majority-dominance’ property whereby x is 
better than x′ on two of three attributes, x′ is better than x′′ on two of three attributes, and x′′ is 
better than x on two of three attributes. In turn, the DM exhibits a majority-rule preference cycle, 
as each alternative is preferred to that for which it is better on two out of three attributes. This 
particular cycle arises directly from the fact that, as a metric of perceptual distance, the contrast 
function satisfies the triangle inequality (see footnote 16). That is, if a > b > c > 0, then

20 The representations of these effects in Fig. 3 do not map exactly to the formal statements in Proposition 3. This 
is because Proposition 3 presumes the DM favors y over x in binary choice, while Fig. 3 illustrates strength effects 
under binary-choice indifference (which facilitates comparisons to Soltani et al.’s experimental data). Nonetheless, the 
behavioral effects formalized in Proposition 3 are driven by the effects of changing the positions of z1 and z2 on the 
relative value difference between x and y, as depicted in Fig. 3. A stronger context effect in the sense of Proposition 3
therefore corresponds to the illustration of effect strength based on value differences in Fig. 3.
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�(a,b) + �(b, c) > �(a, c).

This relation implies that, for any two alternatives among x, x′, and x′′ in Example 1, the total 
contrast on the two dimensions for which the majority-dominant alternative has an advantage 
will be greater than the contrast on the dimension for which the minority-dominant alternative 
has an advantage.

With three potential alternatives that satisfy the cyclical majority-dominance property, the 
basic PN model does not imply that binary choices must be intransitive. Instead, the model 
predicts that if choices are intransitive, they will only be intransitive in one direction. That is, 
while intransitivity could in principle arise in one of two forms — a majority-rule cycle (as in 
Example 1), or an opposite ‘minority-rule’ cycle — the next result clarifies that only majority-
rule cycles can arise under pairwise normalization (in line with previously discussed evidence).

Proposition 4. Given N = 3, suppose x, x′, and x′′ satisfy x1 > x′
1 > x′′

1 , x′′
2 > x2 > x′

2, and 
x′

3 > x′′
3 > x3. Then, if binary-choice preferences among x, x′, and x′′ are intransitive, it must be 

the case that the DM chooses x from X = {x, x′}, x′ from X = {x′, x′′}, and x′′ from X = {x, x′′}.

Proof of Proposition 4. See Appendix.

Our next result considers the effect of splitting an attribute into two subattributes, effectively 
re-framing a choice between two-attribute alternatives, x and y, as a choice between three-
attribute alternatives, x′ and y′.

Proposition 5. Suppose the DM is indifferent between x = (x1, x2) and y = (y1, y2) given X =
{x, y}. Also suppose x′ = (x1a, x1b, x2) and y′ = (y1a, y1b, y2) with x1a + x1b = x1, y1a + y1b =
y1, x1a ≥ y1a , and x1b ≥ y1b . Then the DM chooses x′ from X = {x′, y′}.

Proof of Proposition 5. The DM chooses x′ if and only if �(x1a, y1a) + �(x1b, y1b) >
�(y2, x2). Since V (x; {x, y}) = V (y; {x, y}), �(y2, x2) = �(x1, y1) = �(x1a + x1b, y1a + y1b), 
which implies the previous condition is equivalent to �(x1a, y1a) + �(x1b, y1b) > �(x1a +
x1b, y1a + y1b), which itself is equivalent to (x1a−y1a)(x1b+y1b)

2+(x1b−y1b)(x1a+y1a)2

(x1a+y1a)(x1b+y1b)(x1a+y1a+x1b+y1b)
> 0 and must 

hold since both terms in the numerator are non-negative and at least one is strictly positive given 
x1a ≥ y1a and x1b ≥ y1b (with at most one inequality binding). �

Consistent with evidence of the splitting bias (see Section 2.2), attribute-splitting tilts choice 
in favor of the alternative that is stronger on the split attribute, in this case x, provided its ad-
vantage is maintained on each subattribute.21 In effect, x’s advantage over y on attribute 1 is 
perceived to be larger when spread over two subattributes as result of the fact that the contrast 
function � satisfies the triangle inequality.22

21 Here, the (sub)attribute values do not need to be fully observable. Rather, the analyst only needs to know that the 
unnormalized value of each alternative does not change if an attribute is re-framed as two attributes (which is consistent 
with standard interpretations of the splitting bias) and that the ranking of alternatives on the unsplit attribute dimension 
is not reversed on either subattribute dimension.
22 This effect is also amplified by diminishing sensitivity in �. To illustrate, suppose x1 = 6, y1 = 4, x1a = x1b = 3, 
and y1a = y1b = 2. The triangle inequality implies �(6, 4) < �(6, 5) + �(5, 4), while diminishing sensitivity implies 
�(6, 5) < �(5, 4) < �(3, 2). Thus, �(6, 4) < �(3, 2) + �(3, 2), which means the total contrast between x1a and y1a

and between x1b and y1b exceeds the contrast between x1 and y1.
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Next, we examine the effect of attribute alignability in binary choice. Here, an attribute is con-
sidered ‘alignable’ if the corresponding attribute values are strictly positive for both alternatives. 
To isolate the effect of alignability, we will work from our benchmark of binary-choice indif-
ference between x and y, while presuming that both attributes are alignable. We then consider a 
choice among two modified alternatives with only one alignable attribute.

Proposition 6. Suppose the DM is indifferent between x = (x1, x2) and y = (y1, y2) given X =
{x, y}. Also suppose min{x1, x2, y1, y2} > 0 and let x′ = (x1, x2, 0) and y′ = (y1, 0, y2). Then the 
DM chooses x′ from X = {x′, y′}.

Proof of Proposition 6. V (x′; {x′, y′}) − V (y′; {x′, y′}) = x1−y1
x1+y1

+ x2
x2

− y2
y2

= x1−y1
x1+y1

> 0. �
The choice of x′ over y′ described by Proposition 6 (along with indifference between x and 

y) indicates that the advantage y2 > x2 is weighted more heavily if y2 and x2 exist on the same 
attribute dimension than if they exist on separate (i.e. non-alignable) dimensions. This matches 
evidence of the alignability effect described in Section 2.2.

6. (Binary) allocation problems

We now consider a choice between two different allocations of an asset (or resource), with 
total value A > 0, across N dimensions, so that a given allocation x satisfies 

∑
n≤N xn = A. 

While stylized, this formulation provides a simple baseline that can be related to a variety of 
allocation problems. For example, A could represent an investor’s recurring contribution to a 
savings plan that includes N different funds or a budget that is spent on consumption bundles 
defined over N goods. For simplicity, the setup implicitly presumes that allocations generate the 
same rate of return on all dimensions, though the model’s implications with unequal returns will 
also be discussed.

Proposition 7. Given N > 1 and A > 0, suppose xn = A
N

for all n ≤ N . Then, for any x′ �= x
with 

∑
n≤N x′

n = A, the DM chooses x from X = {x, x′}.

Proof of Proposition 7. See Appendix.

From Proposition 7, a balanced allocation with an equal 1
N

share of the asset on each di-
mension will always be chosen over an unbalanced allocation of the asset. This result aligns with 
evidence of a diversification bias, such as Benartzi and Thaler’s (2001) finding that investors often 
follow a “ 1

N
heuristic” by selecting a balanced savings plan that allocates contributions equally 

across the N available funds. Note, since we abstract from the possibility of uncertain returns, the 
elevated valuation of a balanced allocation cannot be rationalized as a variance-reduction strategy 
and thus represents a “bias” in relation to a standard additive preference model (V +(x) = ∑

n xn), 
which would predict indifference between any two allocations of the same asset.

In Appendix B.2, we show that Proposition 7 still applies in the case where the attribute 
values of both alternatives on a given dimension n are scaled by a constant “return” Rn > 0, with 
Rn �= Rn′ for n �= n′. Thus, if allocations yield higher returns on some dimension than others, 
the DM will still always choose a balanced allocation over an unbalanced allocation of the asset. 
This applies even if the latter alternative involves a complete allocation to the dimension that 
yields the highest return — as would be optimal according to the standard additive model — in 
17
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which case the interpretation of the predicted diversification bias as a “bias” may be especially 
evident.

Considering the DM’s aversion to unbalanced allocations, it is natural to suspect that the 
DM would generally favor allocations for which all dimensions receive a positive share of the 
asset. To explore this idea, suppose two firms previously offered identical products defined on 
N − 1 > 0 dimensions, each of which may be thought of as representing a distinct product 
feature. However, both firms have since invested q > 0 in research and development to improve 
their products. One firm improved the quality (i.e. unnormalized attribute value) of an existing 
product feature from xn′ > 0 to xn′ + q on dimension n′ ≤ N − 1. The other firm innovated a 
N th product feature, attaining a quality level of xN = q on this new dimension. As our next 
result shows, the product with the new feature will now be chosen over the product with the 
improvement to an existing feature.

Proposition 8. Given N > 1 and q > 0, suppose xN = q , x′
N = 0, x′

n′ = xn′ +q for some n′ < N , 
and x′

n = xn > 0 for all other n < N . Then the DM chooses x from X = {x, x′}.

Proof of Proposition 8. V (x; X) − V (x′; X) = �(q, 0) − �(xn′ + q, xn′) = 2xn′
q+2xn′ > 0. �

This prediction that a new product feature will be valued more than an otherwise-equivalent 
improvement to an existing product feature fits with evidence of the feature bias (see Section 2). 
Here, the feature bias can be understood as a consequence of diminishing sensitivity in �. Since 
the mean attribute value between the two products is higher for the existing feature than for the 
new feature (i.e. xn′ + q

2 >
q
2 ), the value difference on the new dimension N will, as a result 

of diminishing sensitivity, be perceived as greater than the equal-sized value difference on the 
existing dimension n′.

Like Proposition 7, Proposition 8 applies even if allocations yield higher returns on some di-
mensions than others (see Appendix B.2). This is especially noteworthy if the return to investing 
q (in terms of the increase in the corresponding attribute value) is lower on the new dimension. 
In this case, the product with the new feature would be chosen despite its lower overall quality. 
Thus, in product-level investment decisions, firms would naturally have an incentive to allocate 
research and development resources towards innovating new features, even if they add little ac-
tual value to the product. In this way, pairwise normalization offers a potential explanation for 
the proliferation of products with an excessive number of features (“feature creep”) as well as 
the related observation that developing “irrelevant” new product features can foster a sustained 
competitive advantage (Thompson and Norton, 2011; Carpenter et al., 1994).

7. A parametric generalization

Next, we consider a generalization of our model based on a common formulation of the nor-
malization computation in neuroscience whereby an input value a is normalized relative to b as 

a
σ+a+b

(e.g. Shevell, 1977; Heeger, 1992; Louie et al., 2011; Carandini and Heeger, 2012). The 
parameter σ ≥ 0 is a “semi-saturation” constant (in the sensory perception literature) that repre-
sents the minimum input intensity at which neural responses are half-saturated (i.e. a

σ+a+b
= 1

2
for a = σ and b = 0). It also appears in recent adaptations of divisive normalization to (single-
attribute) economic choice (Steverson et al., 2019; Webb et al., 2020a).

As with the a
a+b

model, we adapt the a
σ+a+b

model to multi-attribute choice through our 
notion of pairwise, attribute-level comparisons as
18
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V ∗(x;X) =
∑
n≤N

∑
y∈X\x

xn

σ+xn+yn
. (4)

In the analysis that follows, we assess the extent to which the predictions of the basic PN model 
are maintained under (4) with σ > 0, while also revealing some new behaviors that can arise. In 
Appendix B.5, we provide a more detailed discussion of how σ affects the perception of attributes 
and highlight an interpretation of σ as a dynamic reference point based on recent evidence that 
σ may vary with the intensity of previously-encountered stimuli (LoFaro et al., 2014; Louie et 
al., 2014; Khaw et al., 2017; Tymula and Glimcher, 2019; Guo and Tymula, 2020).

7.1. Binary choice with two attributes

With two attributes and two alternatives, the DM’s choice can now be represented using a 
composite of the (symmetric) Cobb-Douglas and additive preference models.

Observation 3. Given N = 2, V +(x′′) = x′′
1 + x′′

2 , and V CD(x′′) = x′′
1 x′′

2 for x′′ ∈ {x, x′}, 
V ∗(x; {x, x′}) − V ∗(x′; {x, x′}) = σ(V +(x)−V +(x′))+2(V CD(x)−V CD(x′))

(σ+x1+x′
1)(σ+x2+x′

2)
. Therefore:

(i) Given V +(x) ≥ V +(x′), V CD(x) ≥ V CD(x′), and σ ≥ 0 with at least two of these inequalities 
non-binding, the DM chooses x from X = {x, x′}.

(ii) Given V +(x) > V +(x′) and V CD(x) < V CD(x′), the DM chooses x from X = {x, x′} if and 
only if σ >

2(V CD(x′)−V CD(x))
V +(x)−V +(x′) .

Thus, if the Cobb-Douglas (V CD) and additive (V +) models agree in their rankings among 
two alternatives, the DM’s choice will align with this ranking. If there is disagreement, the DM’s 
choice will align with the additive model’s ranking if and only if σ is sufficiently large. Thus, 
a larger σ effectively implies a larger weight on additive relative to Cobb-Douglas preferences. 
Compared to the basic PN model (equivalently, Cobb-Douglas), the model with σ > 0 predicts 
flatter binary-choice indifference curves (Fig. 4, top right). In the large-σ limit, the binary-choice 
indifference curves become arbitrarily flat, converging to those generated by the additive model 
(Fig. 4, bottom right), which also represents binary choices in most prevailing multi-attribute 
choice theories.23

7.2. Robustness of key behavioral predictions

Next, we see that many key predictions of the basic PN model are maintained with σ > 0.

Proposition 9. For all σ ≥ 0, the following results still hold under (4):

(i) relative difference effect (Prop. 1);
(ii) majority-rule cycles (Proposition 4);

(iii) the splitting bias (Proposition 5);

(iv) the alignability effect (Proposition 6);
(v) the diversification bias (Proposition 7);

(vi) the feature bias (Proposition 8).
23 In addition to Cobb-Douglas and additive preferences, pairwise normalization can — through a second parametric 
variation of the model — also be related to constant elasticity of substitution (CES) preferences and rank-based lexico-
graphic preferences (Appendix B.5).
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z1

z2
Given X = {x,y}:

V (x;X)>V (y;X)

V (x;X) < V (y;X)

V (x;X) = V (y;X)

Basic PN Model
(Cobb-Douglas)

y1

y2
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PN Model, σ > 0

y1

y2

σ = 0

σ → ∞

xx

Bordalo et al. (2013)∗

y1

y2

xx

Soltani et al. (2012)∗

y1

y2

xx

Many Others∗∗
(Additive)

y1

y2

xx

The shaded region(s) of each graph indicate the region(s) where x is chosen from X = {x, y} with N = 2, as predicted 
by the indicated model(s) with x = (1, .1).

* Bordalo et al. (2013) and Soltani et al.’s (2012) models can generate various geometric configurations of the binary-
choice preference regions. For example, in Bordalo et al.’s model, the shapes of the regions can vary with a ‘salience 
distortion’ parameter δ ∈ (0, 1) (this illustration uses δ = .5) as well as the choice of x (e.g. using a different x on the 
boundary between the shaded and unshaded regions can yield different preference regions than those shown here). In 
Soltani et al.’s model, the regions can vary with four (alternative- and attribute-specific) weighting parameters as well as 
two ‘representation factors.’ While this model does not (under other parameterizations) necessarily predict indifference 
in the region above and to the left of x (where x is better on the first dimension and y is better on the second), it does 
predict that the value difference V (x; X) − V (y; X), and hence the relative ranking of x and y, is fixed throughout this 
region. For an exact description of the models used to generate these graphs, see Appendix C and Appendix D.

** Includes Tversky and Simonson (1993), Kivetz et al. (2004a), Koszegi and Szeidl (2013), Bushong et al. (2019), as 
well as the model in (4), in the limiting case as σ → ∞. Again, see Appendix C and Appendix D for additional details.

Fig. 4. Binary choice with two attributes.

Proof of Proposition 9. See Appendix.

The compromise and dominance effects are not included in Proposition 9 because they depend 
on the magnitude of σ . To illustrate these relationships, we again work from a benchmark of 
indifference between x and y in binary choice (with x1 > y1 and y2 > x2). An added technical 
complication, however, is that allowing σ to vary may undo binary-choice indifference (in light 
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of Observation 3). Therefore, the following results use a stronger condition that ensures binary-
choice indifference is preserved even as σ varies.

Lemma 2. Suppose the DM is indifferent between x = (x1, x2) and y = (y1, y2) given X =
{x, y} for all σ ≥ 0 under (4) (equivalently, x1 = y2 and y1 = x2). Then, if V ∗(x; {x, y, z}) >
V ∗(y; {x, y, z}) with σ = 0, V ∗(x; {x, y, z}) > V ∗(y; {x, y, z}) will still hold with σ > 0 unless 
V CD(z) < V CD(x) < V CD(z′), where z′ ≡ (z1 + σ, z2 + σ).

Proof of Lemma 2. See Appendix.

Lemma 2 implies that the effect of an inferior z on the relative valuation of x and y predicted 
by the basic PN model is maintained with σ > 0, unless z is only “modestly inferior” in the sense 
that the Cobb-Douglas model ranks x below some z′ featuring a magnitude-σ improvement to z
on each dimension (see Fig. 5). This suggests that the compromise and dominance effects will 
not always appear with σ > 0.

Proposition 10. Suppose the DM is indifferent between x = (x1, x2) and y = (y1, y2) given X =
{x, y} for all σ ≥ 0 under (4), and that z satisfies the conditions for either the compromise or 
dominance effect in Proposition 2, implying x is chosen from X = {x, y, z} with σ = 0. Then, with 
σ > 0 and z′ = (z1 + σ, z2 + σ), x is still chosen from X = {x, y, z} if V CD(x) > V CD(z′), but not 
if V CD(x) < V CD(z′).

Proof of Proposition 10. See Appendix.

As illustrated in Fig. 5, Proposition 10 implies that the dominance effect can be reversed — 
leading to a choice of y instead of x — with a decoy zD that is only modestly inferior. Note that 
a modestly inferior decoy is not just more similar to x than to y (as described in Section 4), it is 
also similar to x in an absolute sense, referring to its proximity in attribute space. In Fig. 5, for 
example, a dominance effect will be reversed for any decoy in the region bounded by green lines 
in close proximity of x.24

The implication that the DM would choose the dissimilar alternative y instead of x with zD in 
the choice set is consistent with Tversky’s (1972) “similarity hypothesis.” Though the dominance 
effect is robustly observed on average within many experimental samples (e.g. Huber et al., 
2014), recent experimental evidence from Król and Król (2019) suggests that decoys in close 
proximity (in attribute space) to a dominant alternative tend to generate a “repulsion effect,” 
shifting choice away from the dominant alternative, while a dominance effect is reliably observed 
with more distant decoys. While the boundaries of the dominance effect are only beginning to 
be explored, Król and Król’s finding is consistent with the prediction of the model in (4) with 
σ > 0.25

24 Unlike the dominance effect, the absence of a compromise effect with σ > 0 and a modestly inferior z is not nec-
essarily observable. This is because “modest inferiority” is defined based on the Cobb-Douglas model, which does not 
always agree with (4). Consequently, a modestly inferior z may be chosen over x and y in trinary choice with σ > 0, in 
which case the relative ranking of x and y is unobserved.
25 Other experimental work highlights substantial within-sample heterogeneity in the incidence of the dominance effect, 
even if the effect is robust on average (e.g. Trueblood et al., 2015; Liew et al., 2016; Castillo, 2020). In a follow-up 
empirical analysis of pairwise normalization, Daviet and Webb (2020) show how allowing individual variation in σ may 
be useful for capturing such observed heterogeneity.
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V (x;X) > V (y;X)

V (x;X) < V (y;X)
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predicts opposite
of basic PN model
(z modestly infer.)

This graph shows the effect of adding z to the choice set on the DM’s relative valuations of x and y, as predicted by the 
model in (4) with σ > 0. The green lines denote the boundaries of the ‘similarity’ subregion, as described in the text.

Fig. 5. The effect of a third alternative z when σ > 0.

The next result illustrates how the presence of a dominance (or repulsion) effect with σ > 0
can also depend on the overall value of the alternatives.

Corollary 1. Suppose the DM is indifferent between x = (x1, x2) and y = (y1, y2) given X =
{x, y} for all σ ≥ 0 under (4). Also suppose the DM is indifferent between x and y given X =
{x, y, z} with σ > 0 and z asymmetrically dominated by x. Then, letting w′ = (γ · w1, γ · w2)

for each w ∈ {x, y, z}, x′ is chosen from X = {x′, y′, z′} if γ > 1, while y′ is chosen from X =
{x′, y′, z′} if γ < 1.

Proof of Corollary 1. See Appendix.

Corollary 1 first considers a benchmark in which the DM is indifferent between x and y in 
both binary and trinary choice — here, z neither helps nor hurts the perception of x relative to y. 
In turn, x′, y′, and z′ are defined as analogs to x, y, and z, except with their attribute values scaled 
by a constant γ > 0. As seen, x′ will then be chosen in trinary choice with z′ — consistent with 
the dominance effect — if (and only if) γ > 1, in which case x′, y′, and z′ represent higher-value 
alternatives than x, y, and z.

Corollary 1’s implication that the dominance effect will be more prominent for higher-value 
alternatives has support in the empirical literature. In fact, Malkoc et al. (2013) directly manipu-
lated alternatives’ desirability within each product class and found a robust dominance effect with 
more desirable alternatives, but not with less desirable alternatives. As the authors conclude, the 
results “establish (un)desirability as an important boundary condition” for the dominance effect, 
as Corollary 1 would suggest.26

26 As additional support for this idea, in Frederick et al.’s (2014) study — which revealed several reversals of the 
dominance effect — the lone product class in which the decoy created a non-negligible shift in subjects’ choices towards 
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8. Additional discussion

This paper presented a theory of multi-attribute choice based on pairwise attribute-level com-
parisons through divisive normalization — a well-documented form of relative value encoding 
in the brain. In this section, we take a closer look at the behavioral consequences of modeling 
divisive normalization through pairwise comparisons, as opposed to other potential approaches 
(Section 8.1). We also elaborate on the representations of attribute-level comparisons in other 
multi-attribute choice theories (Section 8.2).

8.1. Pairwise versus other forms of divisive normalization

To clarify the role of pairwise comparisons in our model, we now operationalize various 
alternatives to pairwise normalization (within an otherwise equivalent modeling framework) and 
compare their predictions to those of the basic PN model. The alternate normalization models 
we consider can all be represented as special cases of the following form:

V (x;X) =
N∑

n=1

xn

xn+r(xn)
. (5)

Under (5), a given attribute value xn is no longer normalized through a series of pairwise 
attribute-level comparisons with the corresponding attribute values of other alternatives in the 
choice set. Instead, xn is normalized through a single comparison, where r(xn) represents the 
value to which xn is compared. We then consider the five alternate normalization models defined 
in Table 2, which vary based on their specification of r(xn).

Table 2
Alternate (divisive) normalization models.

Model xn “compared” to... (on same dimension)

Joint Normalization sum of other attribute values, r(xn) = ∑
x′∈X\x x′

n

Average Normalization average attribute value, r(xn) = ||X||−1 ∑
x′∈X x′

n

Maximum Normalization maximum attribute value, r(xn) = maxx′∈X{x′
n}

Minimum Normalization minimum attribute value, r(xn) = minx′∈X{x′
n}

Max-Min Normalization range, r(xn) = maxx′∈X{x′
n} − minx′∈X{x′

n}

The first model listed in Table 2, referred to as the “joint normalization” model, effectively 
compares each xn to the sum of the corresponding attribute values of all other alternatives in 
the choice set. For example, if X = {x, y, z}, the normalized value of x on dimension n becomes 

xn

xn+yn+zn
under joint normalization, as opposed to xn

xn+yn
+ xn

xn+zn
under pairwise normaliza-

tion. The remaining models in Table 2 embed attribute-level comparisons to the average, the 

the dominant option was also the highest-value product class considered (apartments, as compared to bottled water, fruit, 
hotel rooms, jelly beans, kool-aid, mints, movies, and popcorn). In Huber et al.’s (1982) original study documenting 
the dominance effect, the decoy shifted subjects’ choices in favor of the dominant alternative in all six product classes 
considered, but the largest effects were similarly observed in the two highest-value product classes (cars and televisions, 
as compared to beer, photographic film, restaurant meals, and lotteries with expected payoffs on the order of $20).
23
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Table 3
Behavioral patterns generated by other forms of normalization.
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...Decoy-Range Effect N Y N Y Y

(III) Relative Difference Effect Y Y Y Y Y

(IV) Majority-Rule Preference Cycles Y Y Y Y S

(V) Splitting Bias Y Y Y Y Y

(VI) Alignability Effect Y Y Y Y Y

(VII) Diversification Bias Y Y Y Y S

(VIII) Feature Bias Y Y Y Y Y

Behavioral predictions of the alternate (non-pairwise) normalization models 
defined in Table 2. As in Table 1, here ‘Y’ means the model robustly predicts 
the behavior (i.e. never predicts the opposite or no effect under conditions for 
which it would be expected), ‘N’ means the model does not predict the behav-
ior, and ‘S’ means the model sometimes predicts the behavior and sometimes 
predicts the opposite effect. See Appendix C for detailed explanations.

maximum, the minimum, and the range of attribute values in the choice set. Attribute-level com-
parisons to summary statistics such as these are common in prevailing multi-attribute choice 
theories (as will be discussed in Section 8.2), though their present implementation through divi-
sive normalization is unique.

Table 3 classifies the predictions of the five alternate normalization models using the same 
criteria used to classify the predictions of the basic PN model in Table 1. In all but two cases, 
the alternate normalization models robustly capture the behavioral patterns listed in items (III) 
through (VIII), which — unlike items (I) and (II) — are formalized exclusively in terms of 
binary choices. The ability of these models to capture these same behaviors is not surprising 
considering their commonalities when applied to binary choice. In fact, for binary choice with 
two attributes, all of the alternate normalization models are equivalent to the basic PN model (see 
Appendix B.6).

Despite the behavioral similarities in binary choice, the alternate normalization models are 
less effective in capturing the compromise and dominance effects. In contrast to the basic PN 
model, none of the alternate normalization models are able to capture all of the behaviors in 
Table 3. That said, the “minimum normalization” model comes close, though there are several 
behavioral differences between minimum normalization and pairwise normalization that are not 
revealed in Table 3. Of note, the predictions of the minimum normalization model shown in the 
24
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Each graph shows the effect of z on the relative valuations of x and y, as predicted by the indicated model. As in Fig. 2, 
the graphs were created using x = (2, 1) and y = (1, 2).

Fig. 6. The effect of z under alternate normalization models.

bottom center panel of Fig. 6 often differ from the corresponding predictions of the basic PN 
model in Fig. 2. Under minimum normalization, for instance, the third alternative z can only 
affect the relative ranking of x and y in cases where z is strictly worse than both x and y on at 
least one dimension, while this is not true under pairwise normalization. Similarly, the valuations 
of x and y cannot vary with zn in cases where zn is at least as large as xn or yn. As a result, the 
minimum normalization model does not share the basic PN model’s predictions from parts (ii) 
and (iii) of Proposition 3 that the dominance effect is stronger than the compromise effect, and 
that the dominance effect weakens when the decoy becomes symmetrically dominated.

8.2. “Comparisons” in multi-attribute choice theories

Like our model, other multi-attribute choice theories typically suggest that an alternative’s 
attributes are “compared” (or otherwise valued in relation) to the corresponding attributes of 
other alternatives. While formal representations of such attribute-level comparisons vary from 
model to model, the use of the divisive normalization computation for this general purpose is not 
unique to our theory.

For instance, Bordalo et al. (2013)’s proposed form of their “salience function” (eq. 4, p. 
809) is identical to our contrast function �(a, b) = ∣∣ a−b

a+b

∣∣, though their implementation differs. 
While we use � to express the perceived, decision-relevant value difference between two at-
tribute values, Bordalo et al.’s salience function is used in an intermediate step that determines 
which attribute receives a smaller weight by comparing an attribute value to the average of all 
25
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alternatives in the choice set. More precisely, for the case with alternatives defined on two quality 
dimensions, Bordalo et al.’s (2013) model can be represented as:

V (x;X) =
⎧⎨⎩

βx1 + x2, �(x1, x̄1) < �(x2, x̄2),
1+β

2

(
x1 + x2

)
, �(x1, x̄1) = �(x2, x̄2),

x1 + βx2, �(x1, x̄1) > �(x2, x̄2),

(6)

given 0 ≤ β < 1 and where x̄n ≡ ||X||−1 ∑
x′∈X x′

n is the average attribute value on dimension n. 
Note, under (6), x1 receives more (less) weight than x2 if there is more (less) contrast between 
x1 and x̄1 than between x2 and x̄2.

Tversky and Simonson’s (1993) model also uses divisive normalization to express the total 
“advantage” of x over y, A(x, y) = ∑

n max{xn −yn, 0}, relative to its “disadvantage,” D(x, y) =
A(y, x), as A(x,y)

A(x,y)+D(x,y)
in its simplest form (eq. 8, p. 1185). In addition, Tversky and Simonson 

conceptualize the advantage and disadvantage functions as arising from pairwise comparisons of 
attribute values.27 Unlike our use of divisive normalization, however, attribute information is first 
aggregated across dimensions since attribute values from all dimensions enter each A(x,y)

A(x,y)+D(x,y)
computation.

Next, the simplest version of Soltani et al.’s (2012) “range normalization” model can be rep-
resented by:

V (x;X) = x1
xmax

1 −xmin
1

+ x2
xmax

2 −xmin
2

, (7)

where xmax
n = max{x′

n : x′ ∈ X} and xmin
n = min{x′

n : x′ ∈ X} denote the maximum and minimum 
attribute values on dimension n.28 Thus, each xn is divided by the range (xmax

n −xmin
n ) of attribute 

values on that dimension. Note, however, the attribute value itself (xn) does not enter the denom-
inator unless it represents the maximum or minimum on that dimension. This distinguishes range 
normalization from standard formulations of divisive normalization in neuroscience.

Table 4 summarizes the varying representations of attribute-level comparisons in these and 
other prevailing multi-attribute choice theories. Attribute-level comparisons are either imple-
mented through some form of normalization, through attribute weights, or through subtraction 
(with possible additional transformations). In these comparisons, attribute values are either com-
pared to each other (in pairs), or compared to a summary statistic, such as the average, minimum, 
or range of attribute values on that dimension.29

For binary-choice problems, pairwise normalization is certainly simple, as it only requires a 
single computation to express the perceived value of an attribute, i.e. xn

xn+yn
, while comparisons 

to summary statistics would require at least two distinct computations — the computation of 
the summary statistic itself and the computation used to implement the comparison between 
the attribute value and that summary statistic. With many alternatives, however, the use of a 
summary statistic could certainly simplify the problem. This observation reinforces the sentiment 
(expressed in Section 3) that our model is not tailored to choice environments where there are 

27 Also see Marley (1991) and Tserenjigmid (2015) for axiomatizations of pairwise comparisons.
28 Soltani et al.’s (2012) more general model features 2||X|| + 3 additional parameters. For clarity, we show a version 

without these extra parameters and also omit a term, −( xmin
1

xmax
1 −xmin

1
+ xmin

2
xmax

2 −xmin
2

)
, that is common to all alternatives and 

therefore not choice-relevant. See Appendix C for details.
29 In addition to Kivetz et al.’s (2004a) model, Tserenjigmid’s (2019) reference-dependent model also features compar-
isons between an attribute value and the minimum on its dimension.
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Table 4
“Comparisons” in multi-attribute choice models.

Attribute-level “comparisons”... Inter-attribute 
“comparisons” of 
attribute-level 
outputs?

Computation 
used in each 
comparison

What is each 
attribute value 
compared to?

Pairwise Normalization normalization other attribute
values, in pairs

no

Bordalo et al. (2013) normalization* average of 
attribute values

yes, outputs 
are ranked

Bushong et al. (2019) weight by decr. 
function of...

range of attribute 
values (max - min)

no

Kivetz et al. (2004a) subtraction** minimum of 
attribute values

no

Koszegi and Szeidl (2013) weight by incr. 
function of...

range of attribute 
values (max - min)

no

Soltani et al. (2012) (range)
normalization*

range of attribute 
values (max - min)

no

Tversky and Simonson (1993) subtraction other attribute
values, in pairs

yes, through
normalization*

* Here, “normalization” is used to encompass any computation involving division. That said, Soltani et al.’s 
(2012) use of “range normalization” may be interpreted as distinct from the divisive normalization computa-
tion, in which an input value is typically divided by a term that includes itself. See text for relevant caveats 
and Appendix C for technical details.
** Additional transformations of the difference between two attribute values may be applied.

too many alternatives to realistically carry out every possible pairwise comparison. Therefore the 
reported results should be interpreted as applying to settings when all attributes and alternatives 
are considered.30

Models that entail attribute-level comparisons to a summary statistic are naturally equipped 
to address evidence that choices can be sensitive to that particular statistic. For instance, behav-
ior dependent on the average attribute value is evident from empirical evidence of the relative 
difference effect (see Section 2.2). Experimental research has also revealed range-dependence, 
whereby a fixed difference between two attribute values is weighted less when the range of at-
tribute values on that dimension is wider (Mellers and Cooke, 1994; Yeung and Soman, 2005). 
Even though pairwise normalization does not compare attributes to the average or range of at-
tribute values in the choice set, it nonetheless captures both average- and range-dependence in 
choice. Proposition 1 established average-dependence (in the form the relative difference effect) 
while range-dependence is demonstrated in Appendix B.3.

30 Of course, with arbitrarily many alternatives and/or attributes, it may also be impractical to compute summary statis-
tics across all alternatives on every dimension, not to mention carrying out the additional intra-attribute comparisons 
embedded in some models (see Table 4). With that said, Koszegi and Szeidl’s (2013) focusing theory may be regarded 
as providing a reduced-form description of how decision-makers allocate attention across attributes when there are many 
possible attributes to consider.
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As described in Section 4, pairwise normalization also implies that more similar alternatives 
will be “easier to compare” than less similar alternatives. This idea is also prominent in Naten-
zon’s (2019) model, in which an imperfectly-informed (yet Bayesian rational) decision-maker 
can exhibit the compromise and dominance effects due to the relative ease of comparing an infe-
rior third alternative to the existing alternative to which it is more similar. In Natenzon’s model, 
ease-of-comparison is operationalized as an assumption about value correlations among alterna-
tives that may be encountered in one’s environment. Pairwise normalization provides a potential 
foundation for Natenzon’s assumption, while suggesting that the relative ease of comparing more 
similar alternatives does not need to reflect an inherent feature of the alternatives or environment. 
Instead, it may arise due to the manner in which our brains encode sensory information.

Appendix A. Additional proofs

A.1. Proof of Lemma 1

Suppose V (z; {x′, z}) < V (z; {x′, z}) for x′ ∈ {x, y} (i.e. that z1z2 < x1x2 = y1y2, from Obser-
vation 1). Noting a−b

a+b
= 2a

a+b
− 1, we can see that |V (x; {x, z}) − V (z; {x, z})| > |V (y; {y, z}) −

V (z; {y, z})| is equivalent to x1
x1+z1

+ x2
x2+z2

>
y1

y1+z1
+ y2

y2+z2
, which we can equivalently re-

express as x̃1
x̃1+z̃1

+ x̃2
x̃2+z̃2

>
ỹ1

ỹ1+z̃1
+ ỹ2

ỹ2+z̃2
with w̃n ≡ wn√

x1x2
for w ∈ {x, y, z} and n ∈ {1, 2}. 

Using x̃1x̃2 = ỹ1ỹ2 = 1 to substitute out x̃2 and ỹ2, cross-multiplying and collecting terms, then 
factoring out (1 − z̃1z̃2)(x̃1 − ỹ1) > 0, we see this condition holds if and only if z̃1 > x̃1ỹ1z̃2. 
Substituting out each w̃n = wn√

x1x2
, then multiplying both sides by 

√
x1x2
z2

> 0, and then substitut-

ing out y1
x2

= m
xy
1

m
xy
2

(which holds since y1m
xy
2 = y1x2+y1y2

2 = y1x2+x1x2
2 = x2m

xy
1 ), we see this is 

equivalent to z1
z2

>
m

xy
1

m
xy
2

, i.e. that z is more similar to x than to y.

Now suppose V (z; {x′, z}) > V (z; {x′, z}) for x′ ∈ {x, y} (implying z1z2 > x1x2 = y1y2, 
from Observation 1). Noting a−b

a+b
= 2a

a+b
− 1, we can see that |V (x; {x, z}) − V (z; {x, z})| >

|V (y; {y, z}) −V (z; {y, z})| is equivalent to x1
x1+z1

+ x2
x2+z2

<
y1

y1+z1
+ y2

y2+z2
, which we can equiv-

alently re-express as x̃1
x̃1+z̃1

+ x̃2
x̃2+z̃2

<
ỹ1

ỹ1+z̃1
+ ỹ2

ỹ2+z̃2
with w̃n ≡ wn√

x1x2
for w ∈ {x, y, z} and n ∈

{1, 2}. Using x̃1x̃2 = ỹ1ỹ2 = 1 to substitute out x̃2 and ỹ2, cross-multiplying and collecting terms, 
then factoring out (1 − z̃1z̃2)(x̃1 − ỹ1) < 0, we see this condition holds if and only if z̃1 > x̃1ỹ1z̃2. 
The rest of the proof then follows our work for the case with V (z; {x′, z}) > V (z; {x′, z}) with 
x′ ∈ {x, y}.

Next, if V (z; {x′, z}) = V (z; {x′, z}) for x′ ∈ {x, y}, then |V (x; {x, z}) − V (z; {x, z})| =
|V (y; {y, z}) − V (z; {y, z})| = 0. Proposition 12 (see Appendix B.4) then implies that ei-
ther V (z; {x′, z}) = V (z; {x′, z}) for x′ ∈ {x, y}, V (z; {x′, z}) < V (z; {x′, z}) for x′ ∈ {x, y}, 
V (z; {x′, z}) > V (z; {x′, z}) for x′ ∈ {x, y} must hold. This means the desired result has been 
established for all applicable cases. �
A.2. Proof of Proposition 2

First, observe z1
z2

> x1
x2

>
m

xy
1

m
xy
2

given z1 > x1 and z2 < x2 in part (i), and z1
z2

>
y1
x2

= m
xy
1

m
xy
2

given 

z1 > y1 and z2 < x2 in part (ii), where y1
x

= m
xy
1
xy is verified by cross multiplication with x1x2 =
2 m2
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y1y2 (which holds from Observation 1 with binary-choice indifference). Thus, z is more similar 
to x than to y in both cases. Next, given z is not chosen in (i) and is asymmetrically dominated by 
x in (ii), Proposition 12 (see Appendix B.4) implies V (z; X′) < V (x′; X′) for all x′ ∈ {x, y} and 
X′ ∈ {{x′, z}, {x, y, z}}. With Lemma 1 and z’s relative similarity to x, this implies V (x; {x, z}) −
V (z; {x, z}) > V (y; {y, z}) − V (z; {y, z}), which is equivalent (after adding 2 to both sides, then 
dividing through by 2, while noting a−b

a+b
= 2a

a+b
− 1) to x1

x1+z1
+ x2

x2+z2
>

y1
y1+z1

+ y2
y2+z2

, i.e. 
V (x; {x, z}) > V (y; {y, z}). Noting V (x′; {x′, x′′, z}) = V (x′; {x′, z}) +V (x′; {x′, x′′}) for x′, x′′ ∈
{x, y} with x′ �= x′′, and given V (x; {x, y}) = V (y; {x, y}), we then see that V (x; {x, y, z}) >
V (y; {x, y, z}) must hold in both (i) and (ii), as desired. �
A.3. Proof of Proposition 4

We proceed by contradiction. If there is a minority-rule preference cycle, then x′ is preferred to 
x, x′′ to x′, and x to x′′. Let λ1 ≡ 1

x′
1
, λ2 ≡ 1

x2
, λ3 ≡ 1

x′′
3

, and w̃n ≡ λnwn for all w ∈ {x, x′, x′′} and 

n = 1, 2, 3. Also define kn ≡ max{w̃n} − 1 > 0 and qn ≡ 1 − min{w̃n} > 0 so that the ordered, 
rescaled attribute values are (1 + kn, 1, 1 − qn) for each n. Noting normalized valuations are 
invariant to scaling all attribute-n values by λn > 0, our preference cycle implies:

V (x′; {x,x′}) > V (x; {x,x′}) ⇒ k1
2+k1

+ q2
2−q2

<
k3+q3

2+k3−q3
,

V (x; {x,x′}) > V (x′′; {x,x′′}) ⇒ k2
2+k2

+ q3
2−q3

<
k1+q1

2+k1−q1
,

V (x′′; {x′,x′}) > V (x′; {x′,x′′}) ⇒ k3
2+k3

+ q1
2−q1

<
k2+q2

2+k2−q2
.

Summing these conditions yields 
∑3

n=1

(
kn

2+kn
+ qn

2−qn

)
<

∑3
n=1

( kn+qn

2+kn−qn

)
. Thus, kn

2+kn
+

qn

2−qn
<

kn+qn

2+kn−qn
for at least one n ∈ {1, 2, 3}. Combining the fractions on the left-side, we get 

2(kn+qn)
(2+kn)(2−qn)

<
kn+qn

2+kn−qn
, which holds if and only if 2(2 + kn − qn) < (2 + kn)(2 − qn), i.e. if and 

only if −qnkn > 0, a contradiction. �
A.4. Proof of Proposition 7

Follows from Proposition 7* with Rn = 1 for all n ≤ N (see Appendix B.2). �
A.5. Proof of Proposition 9

Part (i). Using the notation in Proposition 1, ∂[V ∗(x′;{x′,y′})−V ∗(y′;{x′,y′})]
∂k

= −2(y2−x2)

(σ+y2+x2+2k)2 < 0
since y2 > x2, which ensures the relative difference effect holds under (4) for all σ ≥ 0.

Part (ii). Let ŵn = wn + σ
2 for w ∈ {x, x′, x′′} and n = 1, 2, 3. Thus, a majority dominance re-

lationship among x, x′, and x′′ exists if and only if it also exists among x̂, x̂′, and x̂′′. From 
Proposition 4, if binary-choice preferences among ̂x, ̂x′, and ̂x′′ are intransitive, they must follow 
a majority-rule cycle in the basic PN model. Noting V (ŵ; {ŵ, ̂w′}) = V ∗(w; {w, w′}), if prefer-
ences among x, x′, and x′′ are intransitive under (4) with σ ≥ 0, they must also follow the same 
majority-rule cycle.

Part (iii). Using the notation in Proposition 5, x1a−y1a

σ+x1+y1
< min

{ x1a−y1a

σ+x1a+y1a
, x1b−y1b

σ+x1b+y1b

}
holds 

since x1 + y1 > max{x1a + y1a, x1b + y1b}. Thus, x1a−y1a

σ+x1a+y1a
+ x1b−y1b

σ+x1b+y1b
>

x1a−y1a+x1b−y1b

σ+x1+y1

= x1−y1 , which ensures the splitting bias holds under (4).

σ+x1+y1
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Part (iv). Using the notation in Proposition 6 and given V ∗(x; {x, y}) = V ∗(y; {x, y}), we 
get V ∗(x′; {x′, y′}) − V ∗(y′; {x′, y′}) = V ∗(x′; {x′, y′}) − V ∗(x; {x, y}) − V ∗(y′; {x′, y′}) +
V ∗(y; {x, y})) = x2

σ+x2
− y2

σ+y2
− x2−y2

σ+x2+y2
= (y2−x2)x2y2

(σ+x2)(σ+y2)(σ+x2+y2)
> 0 for any σ ≥ 0 since 

y2 > x2. Thus, the alignability effect holds under (4).

Part (v). Using the notation in Proposition 7, we see V ∗(x′; {x, x′}) − V ∗(x; {x, x′}) =∑
n≤N

x′
n−xn

σ+x′
n+xn

= ∑
n<N

x′
n−AN−1

σ+x′
n+AN−1 + A−∑

n<N x′
n−AN−1

σ+A−∑
n<N x′

n+AN−1 . Differentiating by x′
n, n ≤ N − 1

and substituting x′
N back in using 

∑
n≤N x′

n = A gives σ+2AN−1

(σ+AN−1+x′
n)2 = σ+2AN−1

(σ+AN−1+x′
N )2 . Thus, 

the system of N − 1 first-order conditions is solved by x′
n = x′

N , implying x′
n = A

N
= xn for all 

n ≤ N , thus ensuring V ∗(x′; {x, x′}) < V ∗(x; {x, x′}) for x′ �= x.

Part (vi). Using the notation in Proposition 8, V ∗(x; {x, x′}) − V ∗(x′; {x, x′}) = q
σ+q

−
q

σ+2xn′+q
> 0 since xn′ > 0. Thus, the feature bias holds for any σ ≥ 0 under (4). �

A.6. Proof of Lemma 2

Using (1) and (4), V ∗(x; {x, y, z}) > V ∗(y; {x, y, z}) if and only if V (x; {x, y, z′}) >
V (y; {x, y, z′}). Since 

z′
1

z′
2

= z1+σ
z2+σ

and 
m

xy
1

m
xy
2

= 1 given x1 = y2 and y1 = x2, z′ is more similar 

to x than to y if and only if z is more similar to x than to y. From Observation 1, Lemma 1, and 
Proposition 12 (see Appendix B.4), it then follows that V ∗(x; {x, y, z}) < V ∗(y; {x, y, z}) if and 
only if z1z2 < x1x2 = y1y2 < z′

1z
′
2. �

A.7. Proof of Proposition 10

Since x1x2 > z1z2 must hold in the case of the compromise and dominance effects with σ = 0, 
the desired result then follows from Lemma 2. �
A.8. Proof of Corollary 1

Given V ∗(x; {x, y, z}) = V ∗(y; {x, y, z}) with x1 = y2 and y1 = x2, Proposition 10 implies 
V CD(x) = V CD(za), with za = (z1 + σ, z2 + σ). Since γ x1 = γy2 and γy1 = γ = x2, Propo-
sition 10 also implies that V (x′; {x′, y′, z′}) > V (y′; {x′, y′, z′}) holds if and only if V CD(x′) >
V CD(zb), with zb = (γ z1 + σ, γ z2 + σ). We can then compute V CD(x′) − V CD(zb) = γ 2x1x2 −
γ 2z1z2 + γ σ(z1 + z2) + σ 2 = γ 2V CD(x) − γ 2V CD(za) − γ (1 − γ )σ (z1 + z2) − (1 − γ 2)σ =
−γ (1 − γ )σ (z1 + z2) − (1 − γ 2)σ since V CD(x) = V CD(za). It is then readily apparent that 
−γ (1 −γ )σ (z1 +z2) −(1 −γ 2)σ ≷ 0 for γ ≷ 1. This, along with the fact that V (z′; {x′, y′, z′}) <
max{V (x′; {x′, y′, z′}), V (y′; {x′, y′, z′})} must hold given x (x′) dominates z (z′), yields the de-
sired result. �
Appendix B. Additional results

B.1. Ease of comparisons

As demonstrated by Lemma 1, pairwise normalization implies that it is “easier to com-
pare” more similar alternatives than less similar alternatives. Formally, given z is more sim-
30
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ilar to x than to y, with the DM indifferent between x and y in binary choice, the magni-
tude of the perceived value difference will be larger between z and x than between z and y: 
|V (z; {x, z}) − V (x; {x, z})| > |V (z; {y, z}) − V (y; {y, z})|.

However, the implication that z is easier to compare to x than to y in this sense is not directly 
observable. This is because x and y would either both be chosen over z with certainty in binary 
choice, or z would be chosen over both x and y. With this in mind, the following corollary shows 
how an adaptation of the basic PN model to a stochastic choice environment captures the ease of 
comparison concept in an observable form:

Corollary 2. Suppose the DM is indifferent between x = (x1, x2) and y = (y1, y2) with X =
{x, y}, and that z is more similar to x than to y in that z1

z2
>

m
xy
1

m
xy
2

. Next, consider a stochastic 

extension of the deterministic basic PN model given in (1), with binary-choice probabilities given 
by

Pr[x′; {x′,x′′}] = f (V (x′; {x′,x′′}),V (x′′; {x′,x′′})), (8)

where f is strictly increasing in its first argument and strictly decreasing in its second argument. 
Then 

∣∣Pr[z; {x, z}] − 1
2

∣∣ ≤ ∣∣Pr[z; {y, z}] − 1
2

∣∣ (which only binds when both sides of the inequality 
are zero).

Proof. V (x; {x, z}) ≷ V (z; {x, z}) implies V (x; {x, z}) ≷ V (y; {y, z}) and V (z; {x, z}) ≶
V (z; {y, z}) (Proposition 12). Noting Pr[z; {w, z}] = f (V (z; {w, z}), V (w; {w, z})) for w ∈
{x, y}, Pr[z; {x, z}] ≶ Pr[z; {y, z}] is assured for V (x; {x, z}) ≷ V (z; {x, z}) since f is increas-
ing in its first argument and decreasing in its second argument. Thus, either Pr[z; {x, z}] <
Pr[z; {y, z}] < 1

2 or Pr[z; {x, z}] > Pr[z; {y, z}] > 1
2 must hold, ensuring 

∣∣Pr[z; {x, z}] − 1
2

∣∣ <∣∣Pr[z; {y, z}] − 1
2

∣∣, unless V (x′; {x′, x′′}) = (x′′; {x′, x′′}) for all x′, x′′ ∈ {x, y, z} with x′ �= x′′, in 
which case 

∣∣Pr[z; {x, z}] − 1
2

∣∣ = ∣∣Pr[z; {y, z}] − 1
2

∣∣ = 0. �
Corollary 2 can be understood as follows. Suppose x and y are equally likely to be chosen in 

binary choice (as indirectly implied by (8)). Also suppose that the probabilities of choosing z in 
binary choices with x and with y are both less than one half, suggesting z is inferior to x and y. 
Then, if z is more similar to x than to y, the likelihood of choosing z in a binary choice is lower 
with X = {x, z} than with X = {y, z}. That is, z is easier to compare to the similar alternative x
than to the less similar alternative y in the sense that there is a lower probability that the DM will 
“mistakenly” choose the inferior alternative z with x than with y.

B.2. Allocation and investment results with unequal returns

As mentioned in Section 6, the results capturing the diversification and feature biases still 
hold in the basic PN model even if the returns to allocations along each dimension are not equal. 
We will now formalize and prove these results.

To begin, we now distinguish between the amount of an allocation to a given dimension and 
the attribute value generated by that allocation. In particular, we now let an denote the alloca-
tion of A > 0 to dimension n ≤ N , where the (unnormalized) attribute value generated by this 
allocation is now Rnan given Rn > 0 is the (gross) rate of return on dimension n. In the follow-
ing generalization of Proposition 7, we will assume that x and x′ are the alternatives associated 
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with the allocations a1, . . . , aN and a′
1, . . . , a

′
N , respectively (with 

∑
n≤N an = ∑

n≤N a′
n = A), 

implying xn = Rnan and x′
n = Rna

′
n for all n ≤ N .

Proposition 7*. Given N > 1, A > 0, and Rn > 0 for all n ≤ N , suppose xn = Rnan with an = A
N

for all n ≤ N . Then, for any x′ �= x satisfying x′
n = Rna

′
n with 

∑
n≤N a′

n = A, x is chosen from 
X = {x, x′}.

Proof. Using 
∑

n≤N a′
n = A and xn = Rn

A
N

to substitute out x′
N = RNa′

N and each xn from 

(1) while canceling all Rn terms gives V (x′; X) = ∑N−1
n=1

a′
n

A N−1+a′
n

+ A−∑N−1
n=1 a′

n

A N−1+A−∑N−1
n=1 a′

n

. Differ-

entiating by a′
n, n ≤ N − 1, setting each derivative to zero, and substituting a′

N back in using ∑
n≤N a′

n = A gives A N
(A+a′

nN)2 = A N
(A+a′

NN)2 . Thus, the system of N − 1 first-order conditions is 

solved by a′
n = a′

N , implying a′
n = A

N
(and x′

n = xn) for all n ≤ N , ensuring V (x′; X) < V (x; X)

for x′ �= x. �
Thus, the diversification bias captured in Proposition 7 still holds with unequal returns.
To formalize the feature bias with unequal returns, we now assume that an investment of q > 0

on dimension n ≤ N yields a Rnq increase in the unnormalized attribute value on dimension n. 
We can then generalize Proposition 8 as:

Proposition 8*. Given N > 1, q > 0, and Rn > 0 for n = 1, . . . , N , suppose xN = RN · q , 
x′
N = 0, x′

n′ = xn′ + Rn′ · q for some n′ < N , and x′
n = xn > 0 for all n < N . Then x is chosen 

from X = {x, x′}.

Proof. V (x; {x, x′}) −V (x′; {x, x′}) = �(RN ·q, 0) −�(xn′ +Rn′ ·q, xn′) = 2xn′
Rn′ ·q+2xn′ > 0 given 

q > 0, Rn′ > 0, and xn′ > 0. �
Thus, the feature bias captured in Proposition 8 also still holds with unequal returns.

B.3. Range-dependent preferences

The following result shows how the perceived value difference between two attribute values 
decreases with the range of values on that dimension (holding the average fixed):

Proposition 11. Suppose the DM is indifferent between x and y when X = {x, y, x′, y′}, and 
x′

2 < x2 < y2 < y′
2. Also suppose x′′

1 = x′
1, y′′

1 = y′
1, x′′

2 = x′
2 − k, and y′′

2 = y′
2 + k for some 

k > 0. Then V (x; X) > V (y; X) with X = {x, y, x′′, y′′}.

Proof. Using x′′
1 = x′

1, y′′
1 = y′

1, x′′
2 = x′

2 −k, and y′′
2 = y′

2 +k, we can express V (z; {x, y, x′′, y′′})
− V (z; {x, y, x′, y′}) = z2

z2+x′
2−k

+ z2
z2+y′

2+k
− z2

z2+x′
2

− z2
z2+y′

2
for each z2 ∈ {x2, y2}. Hence, 

∂2

∂z2∂k

[
V (z; {x, y, x′′, y′′}) − V (z; {x, y, x′, y′})]

k=0 = x′
2−z2

(z2+x′
2)

3 − y′
2−z2

(z2+y′
2)

3 < 0 given x′
2 < z2 <

y′
2. Thus, V (x; {x, y, x′′, y′′}) − V (x; {x, y, x′, y′}) > V (y; {x, y, x′′, y′′}) − V (y; {x, y, x′, y′})

since y2 > x2, implying V (x; {x, y, x′′, y′′}) > V (y; {x, y, x′′, y′′}) given V (x; {x, y, x′, y′}) =
V (y; {x, y, x′, y′}). �
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While Proposition 1 demonstrated how an increase in the average attribute value shifted 
perceptions in favor of the alternative that was weaker on that dimension, Proposition 11 demon-
strates how an increase in the range of attribute values has the same effect, in line with evidence 
from Mellers and Cooke (1994) and Yeung and Soman (2005).

B.4. Superiority/inferiority result

The following result shows that, when the DM is indifferent between x and y in binary choice, 
the superiority or inferiority of z relative to x and y does not depend on whether alternatives are 
evaluated in binary or trinary choice.

Proposition 12. Suppose the DM is indifferent between x = (x1, x2) and y = (y1, y2) with X =
{x, y}. Then the following conditions are equivalent:

(i-a) V (z; {x, z}) ≷ V (x; {x, z});
(i-b) V (z; {y, z}) ≷ V (y; {y, z}),
(ii-a) V (z; {x, y, z}) ≷ V (x; {x, y, z}),
(ii-b) V (z; {x, y, z}) ≷ V (y; {x, y, z}).

Proof. From Observation 1, V (z; {x, z}) ≷ V (x; {x, z}) (i-a) is equivalent to z1z2 ≷ x1x2 =
y1y2 given V (x; {x, y}) = V (y; {x, y}). Thus, (i-a) must be equivalent to (i-b). We then see 

V (x′; {x′, x′′}) +V (x′′; {x′, x′′}) = x′
1+x′′

1
x′

1+x′′
1
+ x′

2+x′′
2

x′
2+x′′

2
= 2. Therefore, V (x′; {x′, x′′})≷V (x′′; {x′, x′′}), 

1 ≷ V (x′′; {x′, x′′}), and V (x′; {x′, x′′}) ≷ 1, are equivalent. Since V (z; {x, z}) ≷ V (x; {x, z})
and V (z; {y, z}) ≷ V (y; {y, z}) are equivalent, V (z; {x, z}) ≷ V (x; {x, z}) implies V (z; {x, z}) +
V (z; {y, z}) ≷ V (x; {x, z}) + 1. Since V (x; {x, y}) = V (y; {x, y}), V (x; {x, y}) = 1. Thus, 
V (z; {x, z}) ≷ V (x; {x, z}) implies V (z; {x, y)} = V (z; {x, z}) + V (z; {y, z}) ≷ V (x; {x, z}) +
V (x; {x, y}) = V (x; {x, y, z}) (ii-a). In turn, we see V (z; {x, y, z}) = V (z; {x, z}) + V (z; {y, z})
≷ V (x; {x, z}) +V (x; {x, y}) = V (x; {x, y, z}) implies V (z; {x, z}) ≷ V (x; {x, z}) or V (z; {y, z})
≷ V (x; {x, y}) = 1 or both. Since V (z; {y, z}) ≷ 1 is equivalent to V (z; {y, z}) ≷ V (y; {y, z}), 
which itself is equivalent to V (z; {x, z}) ≷ V (x; {x, z}), since at least one among V (z; {x, z})
≷ V (x; {x, z}) and V (z; {y, z}) ≷ V (x; {x, y}) = 1 are true, they must both hold. Thus, (ii-a) 
and (i-a) are equivalent. By switching x and y in the arguments outlined above, we can likewise 
establish the equivalence of (ii-b) and (i-b). �
B.5. A generalization with two additional parameters

Next, we provide additional results arising from a variation of the pairwise normalization 
model (based on a common formulation of the normalization computation studied in neuro-
science) that includes the parameter σ ≥ 0 from the model in (4), as well as an additional 
parameter α > 0. This version of the model is given by:

V ∗∗(x;X) =
N∑

n=1

∑
y∈X\x

xα
n

σα+xα
n +yα

n
. (9)

When considered for an attribute that is observed as a numerical consumption level cn, the model 
in the model (4) nests (9) by taking xn = (un(cn(x)))α . The following result shows how the model 
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in (9) nests some classic microeconomic preference representations when applied to two-attribute 
binary choice.

Proposition 13. Given X = {x, x′} and N = 2 under (9). For each of the following specifications 
of Ṽ (a, b) with the indicated parametric restrictions, x is chosen if Ṽ (x) > Ṽ (x′):

(i) Ṽ (a, b) = V CD(a, b) ≡ ab, with σ = 0 and any α > 0.
(ii) Ṽ (a, b) = V CES(a, b) ≡ (aα + bα)1/α , with σ > 0 sufficiently large and any α > 0.

(iii) Ṽ (a, b) = max{a, b}, with σ > 0 and α > 0 both sufficiently large; if Ṽ (x) = Ṽ (x′), x is 
then preferred to x′ if and only if Ṽ0(x) > Ṽ0(x′), where Ṽ0(a, b) = min{a, b}.

Proof. Given X = {x, x′}, x is chosen if and only if V ∗∗(x; {x, x′}) − V ∗∗(x′; {x, x′}) =∑2
n=1

xα
n −x′

n
α

σα+xα
n +x′

n
α > 0. Combining terms and factoring out the denominator yields:

σα(xα
1 + xα

2 ) + 2xα
1 xα

2 > σα(x′
1
α + x′

2
α
) + 2x′

1
α
x′

2
α
, (10)

so that x is chosen given σ = 0 if and only if xα
1 xα

2 > x′
1
α
x′

2
α , which is equivalent to x1x2 >

x′
1x

′
2. This establishes part (i).
For part (ii), Ṽ (x) > Ṽ (x′) if and only if Ṽ (x)α > Ṽ (x′)α , which is equivalent to xα

1 + xα
2 >

x′
1
α + x′

2
α given Ṽ (a, b) = (aα + bα)1/α . Let σ0 =

(
2(yα

1 yα
2 −xα

1 xα
2 )

xα
1 +xα

2 −x′
1
α−x′

2
α

)1/α

< ∞. Observe σα
0 (xα

1 +
xα

2 ) +2xα
1 xα

2 = σα
0 (x′

1
α +x′

2
α
) +2x′

1
α
x′

2
α . Thus, σα(xα

1 +xα
2 ) +2xα

1 xα
2 > σα(x′

1
α +x′

2
α
) +2x′

1
α
x′

2
α

for all σ > σ0, implying from (10) that x is chosen. The converse is established by contradiction. 
Namely, suppose x is chosen but Ṽ (x) < Ṽ (x′), or equivalently, xα

1 + xα
2 < x′

1
α + x′

2
α . From 

(10), we see, together, these conditions require xα
1 xα

2 > x′
1
α
x′

2
α , so that xα

1 xα
2 − x′

1
α
x′

2
α

> 0. By 
inspection, we can now see σ > σ0 with σ0 > 0 as defined above implies σα(xα

1 +xα
2 ) +2xα

1 xα
2 <

σα(x′
1
α + x′

2
α
) + 2x′

1
α
x′

2
α , which from (10) implies x′ is chosen. Hence, we have a contradiction, 

so that choosing x over x′ necessarily requires Ṽ (x) > Ṽ (x′) for sufficiently large σ > 0.
For part (iii), given Ṽ (a, b) = max{a, b}, letting x = max{x1, x2} and x′ = max{x′

1, x
′
2}, with-

out loss of generality, we see Ṽ (x) > Ṽ (x′) holds if and only if x > x′. Observe, σα(xα
1 + xα

2 ) +
2xα

1 xα
2 ≥ σαxα . Given any σ > x′, we also see σα(x′

1
α + x′

2
α
) + 2x′

1
α
x′

2
α ≤ 2σαx′

1
α + 2x′

1
2α

< 4σαx′α . From (10), we can then see that a sufficient condition for x to be chosen given any 
σ > x′ is σαxα > 4σαx′α . Factoring out σα > 0 then taking the natural log, we see this condi-
tion is equivalent to α ln(x) > α ln(x′) + ln(4). Taking α0 ≡ ln(4)

ln(x)−ln(x′) > 0, we see α ln(x) >

α ln(x′) + ln(4) holds for any α > α0 and σ > x′, so that x must be chosen for sufficiently large 
α and σ . The converse is established by contradiction. Suppose x is chosen but Ṽ (x) < Ṽ (x′), 
or equivalently, x′ > x. Using (10) while applying the logic outlined above (except switching the 
roles of x and x′), it must be the case that, for any σ > x, α ln(x) + ln(4) > α ln(x′) by virtue 
of the choice of x over x′. Defining α′

0 ≡ ln(4)
ln(x′)−ln(x)

> 0 (positive because x′ > x), we can see 
α > α′

0 implies α ln(x) + ln(4) < α ln(x′). Hence, we have a contradiction, so that choosing x
(with Ṽ (x) �= Ṽ (x′)) must require Ṽ (x) > Ṽ (x′) for sufficiently large σ > 0 and α > 0. In the 
case of Ṽ (x) = Ṽ (x′), i.e., x = x′, we see from (10) that, in this case, x will be chosen if and only 
if σα(xα + 
α) + 2xα
α > σα(xα + 
′α) + 2xα
′α with 
 ≡ min{x1, x2} and 
′ ≡ min{x′

1, x
′
2}. 

Subtracting σαxα from both sides, then factoring out σα + 2xα > 0, we see this is equivalent 
to 
 > 
′. Given Ṽ0(a, b) ≡ min{a, b} with x ≥ 
 and x′ ≥ 
′, we see that 
 > 
′ is equivalent to 
Ṽ0(x) > Ṽ0(x′). �
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Part (i) of Proposition 13 shows that the previously-established equivalence between the basic 
PN model and the (symmetric) Cobb-Douglas model in two-attribute binary choice (Observa-
tion 1) extends with any α > 0, provided σ = 0 is maintained. Part (ii) shows that preferences 
converge to those represented by a constant elasticity of substitution (CES) preference model in 
the large-σ limit of the model in (9). In this case, (1 − α)−1 represents the effective elasticity of 
substitution across attributes, implying preferences are nonconvex if α > 1 (i.e. if (1 −α)−1 < 0). 
Lastly, part (iii) shows that when σ and α are both arbitrarily large, the choice is equivalently 
represented by a rank-based lexicographic model, in which the choice between x and x′ is de-
termined by each alternative’s larger attribute value (max{x1, x2}, max{x′

1, x
′
2}). In the event of a 

tie, the choice is then determined by their smaller attribute values (min{x1, x2}, min{x′
1, x

′
2}).

More generally, in two-attribute binary choice, the model in (9) is effectively a composite of 
the Cobb-Douglas and CES preference models, with σ determining the relative weight of each 
representation:

Proposition 14. Given N = 2 and X = {x, x′} under (9):

(i) If V CD(x) ≥ V CD(x′), V CES(x) ≥ V CES(x′), and σ ≥ 0 with at least two of these inequalities 
non-binding, then x is chosen from X = {x, x′}.

(ii) If V CD(x) > V CD(x′) and V CES(x′) > V CES(x), there exists a σ0 > 0 (determined by x1, x2, 
x′

1, x′
2, and α) for which x is chosen from X = {x, x′} if and only if σ < σ0.

Proof. Using (10), x is chosen if and only if (σV CES(x))α + 2(V CD(x))α > (σV CES(x′))α +
2(V CD(x′))α , from which the result in part (i) is readily verified. Part (ii) is also readily veri-
fiable from this condition, where σ0 ≡ ( 2((V CD(x))α−(V CD(x′))α)

(V CES(x′))α−(V CES(x))α

)1/α is derived from the implied 
indifference condition. �

Thus, if the Cobb-Douglas and CES models agree in their rankings among the two alterna-
tives, the DM’s choice will align with this ranking. Otherwise, the choice will coincide with 
Cobb-Douglas if σ < σ0 and with CES if σ > σ0, for some σ0 > 0.

The next result shows that, unlike the contrast function � from the basic PN model, the 
analogous contrast function under (9), denoted as �∗∗, does not exhibit diminishing sensitivity 
over its full domain:

Proposition 15. Given xn ≥ yn (without loss of generality), σ̂ (yn) ≡
(

2
α−1

)1/α

yn, and �∗∗(xn,

yn) ≡
∣∣ xα

n −yα
n

σα+xα
n +yα

n

∣∣:
(i) �∗∗(xn, yn) satisfies diminishing sensitivity if and only if σ = 0 or α ≤ 1 (or both).

(ii) If α > 1 and σ ≤ σ̂ (yn), �∗∗(xn, yn) exhibits diminishing sensitivity (locally) and is con-
cave in xn for all xn ≥ yn.

(iii) If α > 1 and σ > σ̂ (yn), there exist increasing functions x̌(σ ) > yn and x̂(σ ) > yn such that 
�∗∗(xn, yn) exhibits diminishing sensitivity if and only if xn > x̌(σ ), and is concave in xn if 
and only if xn > x̂(σ ).

Proof. For part (i), note d[�∗∗(xn+ε,yn+ε)]
dε

=− αxα
n yα

n (2(xα
n −yα

n )+σα(x1−α
n −y1−α

n ))

xnyn(xα
n +yα

n +σα)2 given xn ≥ yn

(without loss of generality). Thus, d[�∗∗(xn+ε,yn+ε)]
< 0 if and only if 2(xn − yn) + σα(x1−α −
dε n
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y1−α
n ) > 0. With xn ≥ yn, this clearly holds for σ = 0 and also for α ≤ 1 because, together, 

α ≤ 1 and xn ≥ yn guarantee x1−α − y1−α ≥ 0. Thus, �∗∗(xn + ε, yn + ε) < �∗∗(xn, yn)

for all ε > 0 given σ = 0 or α ≤ 1 (or both). Thus, to complete the proof, we only need to 
show that for any σ > 0 and α > 1, there exist a xn ≥ 0 and yn ≥ 0 with xn ≥ yn such that 

2(xn − yn) + σα(x1−α − y1−α) < 0. Take yn = σ(α−1)1/α

2 and let xn = yn + δ. Substituting these 
into 2(xn − yn) + σα(x1−α − y1−α) then differentiating with respect to δ, we get 2 − 2α < 0 for 
α > 1. Also note 2(xn − yn) + σα(x1−α − y1−α) = 0 given xn = yn, i.e., given δ = 0. Together, 

these imply 2(xn − yn) + σα(x1−α − y1−α) < 0 for yn = σ(α−1)1/α

2 and xn = yn + δ, provided 
δ > 0 is sufficiently small, as desired.

For part (ii), let h(xn|yn, σ, α) ≡ 2(xn − yn) + σα(x1−α
n − y1−α

n ). From our above work, 
we can see that �∗∗(xn, yn) exhibits diminishing sensitivity for all xn ≥ yn if and only if 
h(xn|yn, σ, α) > 0 for all xn ≥ yn. Note h′(xn|yn, σ, α) = 2 − (α−1)σα

xα
n

, so that h′(xn|yn, σ, α) =
0 if and only if xn = x∗

n ≡ σ
(

α−1
2

)1/α . Also note, h′′(xn|yn, σ, α) = α(α−1)σα

xα+1 > 0. Thus, 
xn = x∗

n uniquely maximizes h(xn|yn, σ, α). Given h′(xn|yn, σ, α) > 0 for all xn > x∗
n and 

h(yn|yn, σ, α) = 0, �∗∗(xn, yn) satisfies diminishing sensitivity for all xn ≥ yn if and only 
if x∗

n ≤ yn or h(x∗
n |yn, σ, α) ≥ 0 (or both). Given h′(xn|yn, σ, α) < 0 for all xn < x∗

n and 
h(yn|yn, σ, α) = 0, x∗

n > yn implies h(x∗
n |yn, σ, α) < 0. Taken together, these last two ob-

servations imply �∗∗(xn, yn) satisfies diminishing sensitivity for all xn ≥ yn if and only if 
x∗
n ≤ yn, which, using the definitions of x∗

n and of σ̂ (yn), we can see this is equivalent to 

σ̂ (yn) =
( 2

α−1

)1/α
yn. Computing ∂2�∗∗(xn,yn)

∂x2
n

, multiplying through by x2
n(xα

n + yα
n + σα) > 0, 

diving by αxα
n (2yα

n + σα) > 0, and rearranging, we see �∗∗(xn, yn) is concave in xn for all 
xn ≥ yn if and only if xα

n (1 + α) ≥ (α − 1)(yα
n + σα) for all xn ≥ yn. Since the left-side of this 

inequality is clearly increasing in xn, �∗∗(xn, yn) is concave in xn for all xn ≥ yn if and only if 
the inequality holds at xn = yn, i.e., if and only if yα

n (1 + α) ≥ (α − 1)(yα
n + σα). Solving for σ , 

we see this condition is equivalent to σ ≤ σ̂ (yn) =
( 2

α−1

)1/α
yn, as desired.

For part (iii), let x̌(σ ) ≡ {
xn : σα = 2(xn−yn)

x1−α
n −y1−α

n

}
> yn, and x̂(σ ) ≡ ( (α−1)(yα

n +σα)

α+1

)1/α
>

yn. Using our definitions of h(xn|yn, σ, α) and x̌(σ ), h(x̌(σ )|yn, σ, α) = 0 is readily veri-
fiable. Given x∗

n > yn for σ > σ̂ (yn) from part (i), h(yn|yn, σ, α) = 0, h′(xn|yn, σ, α) < 0
for all xn < x∗

n , and h′(xn|yn, σ, α) > 0 for all xn > x∗
n , it follows that x̌(σ ) > x∗

n , implying 
h(xn|yn, σ, α) < 0 for yn < xn < x̌n and h(xn|yn, σ, α) > 0 for xn > x̌n. Recalling from part (i) 
that �∗∗(xn, yn) is concave in xn if and only if xα

n (1 + α) ≥ (α − 1)(yα
n + σα), we can rearrange 

this inequality to see that it binds at x̂(σ ). By inspection, we can then see that xn < x̂(σ ) implies 
xα
n (1 + α) < (α − 1)(yα

n + σα) and xn > x̂(σ ) implies xα
n (1 + α) > (α − 1)(yα

n + σα), implying 
the desired result. Expressing h̃(x̌, σ, y) ≡ h(x̌(σ )|yn, σ, α) = 2(x̌−yn) +σα(x̌1−α −y1−α

n ) = 0, 

we see ∂h̃(x̌,σ,y)

∂x̌
= 2 − (α − 1)x̌−ασα , ∂h̃(x̌,σ,yn)

∂yn
= −2 + (α − 1)y−α

n σα , and ∂h̃(x̌,σ,yn)
∂σ

=
ασα−1

( 1
x̌α−1 − 1

yα−1
n

)
< 0. Next, observe ∂h̃(x̌,σ,y)

∂x̌
= 2 + (1 − α)σαx̌−α > 0. Together, from 

the implicit function theorem, these inequalities imply x̌(σ ) is increasing in σ . By inspection, 
we can also readily verify that x̂(σ ) is increasing in σ since, holding α > 1 fixed, x̂(σ ) is clearly 
increasing in (yα + σα) and (yα + σα) is clearly increasing in σ . �

To help convey key features of �∗∗(xn, yn), Proposition 15 effectively fixes the smaller at-
tribute value, taken here to be yn, while allowing the larger attribute value xn to vary. Of particular 
relevance, if σ is sufficiently small in relation to yn, �∗∗(xn, yn) will exhibit diminishing sen-
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Left: increasing σ leads to the emergence and then expansion of a convex region of the contrast function, with σ deter-
mining the point at which contrast is maximally responsive to changes in xn (for fixed α > 1). Right: when α ≤ 1 the 
contrast function is concave, while its responsivity becomes more concentrated over a smaller range for larger α (for 
fixed σ > 0).

Fig. 7. The effects of σ and α on contrast.

sitivity and strict concavity (in xn) for all xn ≥ yn. If σ is large in relation to yn, however, 
�∗∗(xn, yn) will instead exhibit increasing sensitivity and convexity for values of xn that are 
sufficiently close to yn.

Therefore σ determines where the direct contrast function is maximally responsive to a change 
in xn relative to yn. Since �∗∗(xn, yn) is most responsive to changes in xn at the threshold x̂(σ ), 
the effect of increasing σ can also be understood here as shifting this point of maximum respon-
siveness further to the right (Fig. 7, left).31 As noted by Rayo and Becker (2007), a bounded value 
function with such properties is optimal when agents are limited in their ability to discriminate 
small differences. While σ has been typically treated as a constant in the neuroscience literature 
(e.g. Shevell, 1977; Heeger, 1992; Louie et al., 2011), recent work suggests σ may arise dynami-
cally in neural systems from the history of stimuli (LoFaro et al., 2014; Louie et al., 2014; Khaw 
et al., 2017; Tymula and Glimcher, 2019), thus acting as a dynamic reference point.

The constant α > 1 determines the extent to which the responsiveness of �∗∗(xn, yn) is con-
centrated over a small range of xn, as opposed to being dispersed over a large range. That is, as 
α > 1 increases, �∗∗(xn, yn) becomes more responsive to changes in xn near x̂(σ ), but becomes 
less responsive for xn further from x̂(σ ). For example, in the limit as α → ∞, �∗∗(xn, yn)

assumes the shape of a step-function that is infinitely responsive at x̂(σ ) but unresponsive to 
changes in xn everywhere else (Fig. 7, right).

B.6. Binary-choice equivalence with alternate normalization models

Recall, in two-attribute binary choice, the basic PN model can be equivalently represented by 
a symmetric Cobb-Douglas preference model, V CD(x) = x1x2 (Observation 1). The next result 

31 This interpretation of x̂(σ ) follows because ∂�∗∗(xn,yn)
∂xn

> 0 is increasing where �∗∗(xn, yn) is convex and decreas-

ing where �∗∗(xn, yn) is concave.
37



P. Landry and R. Webb Journal of Economic Theory 193 (2021) 105221
shows that this equivalence generalizes to all of the alternate normalization models considered 
in Section 8.1.

Proposition 16. Given x = (x1, x2), y = (y1, y2), and X = {x, y}, the DM chooses x if and only 
if x1x2 > y1y2 in all of the following models (as defined in Section 8.1):

(i) the joint normalization model;
(ii) the average normalization model;

(iii) the maximum normalization model;
(iv) the minimum normalization model;
(v) the max-min normalization model.

Proof. It is readily verifiable that, given ||X|| = 2, the joint normalization model and the basic 
PN model are equivalent. Thus, part (i) follows from Observation 1. For part (ii), it is read-
ily verifiable that, under average normalization, V (y; {x, y}) is strictly increasing in y2 and 
that V (x; {x, y}) = V (y; {x, y}) given x = (x1, x2) and y = (

y1, 
x1x2
y1

)
. Together, these prop-

erties imply V (x; {x, y}) > V (y; {x, y}) if and only if x1x2 > y1y2. For parts (iii) and (iv), 
we can consider any N ≥ 2. We can then compute �(a, b|a > b) = a

a+a
+ b

a+b
= a−b

2(a+b)
with �(a, b|a < b) = −�(a, b|a > b) under maximum normalization and �(a, b|a > b) =

a
a+b

+ b
b+b

= a−b
2(a+b)

with �(a, b|a < b) = −�(a, b|a > b) under minimum normalization. 

Now V (x; {x, y}) > V (y; {x, y}) if and only if 
∑N

n=1 �(xn, yn) > 0, which itself is equivalent 
to 

∑N
n=1 2�(xn, yn) > 0. Since 2�(a, b) = |a−b|

a+b
under both maximum and minimum normal-

ization is the same as �(a, b) under (1), V (x; {x, y}) > V (y; {x, y}) in the former models must 
hold if and only if V (x; {x, y}) > V (y; {x, y}) holds under (1). The desired result then follows 
from Observation 1. For part (v), it is readily verifiable that, under max-min normalization and 
with N = 2, V (y; {x, y}) is strictly increasing in y2 and that V (x; {x, y}) = V (y; {x, y}) given 
x = (x1, x2) and y = (

y1, 
x1x2
y1

)
. Together, these properties imply V (x; {x, y}) > V (y; {x, y}) if 

and only if x1x2 > y1y2. �
B.7. Analysis with attributes in observable units

As discussed in Section 3.1, for attributes that are observed as numerical consumption levels, 
alternatives’ attribute values can implicitly be equated to a representation that expresses the value 
of x on dimension n through a function un that maps an observed consumption level cn(x) ≥ 0 to 
utilities — that is, with xn = un(cn(x)). This appendix presents versions of our main behavioral 
propositions in which the original conditions on attributes’ utility values are instead placed on 
their associated consumption levels, which are presumably expressed in an observable unit, such 
as dollars. To start, we consider the case in which the underlying utility functions are the same 
for all attributes, i.e. un = u for all n, so that the basic PN model can be re-expressed as:

V (x;X) =
N∑

n=1

∑
y∈X\x

u(cn(x))
u(cn(x))+u(cn(y))

. (11)

Proposition 17. Suppose u is strictly increasing and weakly concave with u(0) = 0. Then, if the 
restrictions on each xn in the following results are instead imposed on each corresponding cn(x), 
the result still holds under (11):
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(i) the relative difference effect (Proposition 1);
(ii) the compromise effect (Proposition 2, part i);

(iii) the dominance effect (Proposition 2, part ii, which covers weak and strict versions);
(iv) the decoy-range effect (Proposition 3, part i);
(v) majority-rule preference cycles (Proposition 4);

(vi) the splitting bias (Proposition 5);
(vii) the alignability effect (Proposition 6);
(viii) the diversification bias (Proposition 7);
(ix) the feature bias (Proposition 8).

Proof. For part (i), Observation 1 implies x′ is chosen with X = {x′, y′} if and only if 
u(c1(x))u(c2(x) + k) > u(c1(y))u(c2(y) + k). Since u(c1(x))u(c2(x)) = u(c1(y))u(c2(y))

with binary-choice indifference between x and y, we can re-express the desired condition 
as u(c1(x))(u(c2(x) + k) − u(c2(x))) > u(c1(y))(u(c2(y) + k) − u(c2(y))). Since u is in-
creasing and c1(x) > c1(y), u(c1(x)) > u(c1(x)). Since u is concave and c2(x) < c2(y), 
u(c2(x) + k) − u(c2(x)) ≥ u(c2(y) + k) − u(c2(y)). Together, these properties guarantee 
u(c1(x))(u(c2(x) + k) − u(c2(x))) > u(c1(y))(u(c2(y) + k) − u(c2(y))), as desired.

For parts (ii) and (iii), it suffices to show that the conditions on x1, x2, y1, y2, z1, and z2

in parts (i) and (ii) of Proposition 2 are necessarily satisfied given the conditions are satisfied 
for c1(x), c2(x), c1(y), c2(y), c1(z), and c2(z). This must be true because, for any x′, x′′ and n, 
u(cn(x′)) ≷ u(cn(x′′)) (i.e. x′

n ≷ x′′
n ) if and only if cn(x′) ≷ cn(x′′) since u is strictly increasing. 

For part (iv), c1(x) > c1(z) = c1(z′) > c1(y) and c2(y) > c2(x) ≥ c2(z) > c2(z′) similarly implies 
x1 > z1 = z′

1 > y1 and y2 > x2 ≥ z2 > z′
2 since u is strictly increasing. For part (v), the result 

likewise follows because x1 > x′
1 > x′′

1 , x′′
2 > x2 > x′

2, and x′
3 > x′′

3 > x3 all hold if and only 
if c1(x) > c1(x′) > c1(x′′), c2(x′′) > c2(x) > c2(x′), and c3(x′) > c3(x′′) > c3(x) with u strictly 
increasing.

For part (vi), we want �(u(c1a(x)), u(c1a(y))) + �(u(c1b(x)), u(c1b(y))) > �(u(c1(x)),

u(c1(y))). Let δi ≡ c1i (x) − c1i (y) for i ∈ {a, b} and δ ≡ c1(x) − c1(y), implying δa +
δb = δ. It suffices to show �(u(c1i (x)), u(c1i (y))) > δi

δ
· �(u(c1(x)), u(c1(y))) for i ∈ {a, b}, 

i.e. Z(c1i (y), c1(y), δi, δ) ≡ �(u(c1i (y) + δi), u(c1i (y))) − δi

δ
· �(u(c1(y) + δ), u(c1(y))) >

0. Next, ∂Z(c1i (y),c1(y),δi ,δ)
∂c1i (y)

= 2(u(c1i (y))u′(c1i (y)+δi )−u(c1i (y)+δi )u
′(c1i (y))))

(u(c1i (y)+δi )+u(c1i (y))))2 < 0 since u(c1i (y) +
δi) > u(c1i (y)) > 0 and u′(c1i (y)) ≥ u′(c1i (y) + δi) > 0 given u is strictly increasing and 
weakly concave. This implies Z(c1i (y), c1(y), δi, δ) is minimized at c1i (y) = c1(y), so that 
Z(c1(y), c1(y), δi, δ) > 0 is sufficient for Z(c1i (y), c1(y), δi, δ) > 0. Using the definition of �
and multiplying through by δ−1

i (u(c1(y) + δ) + u(c1(y)))(u(c1(y) + δi) + u(c1(y))) > 0, we 
see Z(c1(y), c1(y), δi, δ) > 0 is equivalent to u(c1(y)+δi )−u(c1(y))

δi
· (u(c1(y) + δ) + u(c1(y))) >

u(c1(y)+δ)−u(c1(y))
δ

· (u(c1(y) +δi) +u(c1(y))). Since u is strictly increasing and δi < δ, u(c1(y) +
δ) + u(c1(y)) > u(c1(y) + δi) + u(c1(y)). Therefore, it suffices to show u(c1(y)+δi )−u(c1(y))

δi
≥

u(c1(y)+δ)−u(c1(y))
δ

, which must hold since u is concave.
For part (vii), with x′ and y′ defined as in Proposition 6, V (x′; {x′, y′}) − V (y′; {x′, y′}) =

�(u(c1(x)), u(c1(y))) + �(u(c2(x)), u(0)) − �(0, u(c3(y′))), noting c3(y′) = c2(y). Since 
�(u(c2(x)), u(0)) = �(0, u(c3(y′))) = 1 and �(u(c1(x)), u(c1(y))) = u(c1(x))−u(c1(y))

u(c1(x))+u(c1(y))
> 0 given 

c1(x) > c1(y) and u strictly increasing, V (x′; {x′, y′}) − V (y′; {x′, y′}) > 0 is assured, implying 
the alignability effect still holds.
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For part (viii), with x and x′ as defined in Proposition 7, define z �= x such that cn(z) ≡
u−1

(
A
N

− (
cn(x′) − A

N

)
u′( A

N

))
. Then 

∑N
n=1 u(cn(z)) = ∑N

n=1 u(cn(x)) = ∑N
n=1 u

(
A
N

)
, implying 

V (x; {x, z}) > V (z; {x, z}) from Proposition 7. Next, since u is concave, cn(x′) ≤ A
N

− (
cn(x′) −

A
N

)
u′( A

N

)
for all n, implying u(cn(x′)) ≤ u(cn(z)) for all n, which ensures V (x′, {x, x′}) <

V (x; {x, x′}) since V (z, {x, z}) < V (x; {x, z}).
For part (ix), with x and x′ as defined in Proposition 8, V (x; {x, x′}) − V (x′; {x, x′}) =

�(u(q), 0) − �(u(cn(x) + q), u(cn(x))) = 2u(cn(x))
u(cn(x)+q)+u(cn(x))

> 0. �
Thus, under (11), all of our main behavioral propositions (i.e. those corresponding to the 

behaviors listed in Table 1) still apply when the original restrictions on attributes’ utility values 
(i.e. each xn) are placed on the observable consumption levels (each cn(x)) instead, provided 
u is strictly increasing and weakly concave, with u(0) = 0. It is indeed common to assume 
that utility functions over monetary payoffs (among other observable measures of consumption) 
are increasing and concave. However, such utility functions are generally only defined up to a 
positive affine transformation, and thus do not require u(0) = 0. Here, the u(0) = 0 restriction is 
necessary — and in fact already implicit in our original formulation, which presumed xn = 0 for 
the case in which x provides nothing on dimension n.

Of note, parts (ii), (iii), (iv), and (v) of Proposition 17 all follow directly from the original 
results to which they correspond (and in fact do not require u to be concave). This is because 
the only conditions on attribute values in the original results were those that specified the DM’s 
rankings of alternatives on a given attribute dimension (e.g. xn > x′

n), and these conditions are in 
fact equivalent to the new conditions on the associated consumption levels (e.g. cn(x) > cn(x′)) 
given u is strictly increasing. Parts (i), (vi), (vii), (viii), and (ix), however, do not follow as 
directly because their original results featured additional conditions on attribute values. As noted 
in footnote 14, these additional conditions were all used to ensure that a given entity had the same 
unnormalized value regardless of how it was framed or otherwise represented in terms of the 
particular alternative and/or attribute dimensions on which it was expressed. Table 5 summarizes 
these additional conditions — which are consistent with standard interpretations of the behavioral 
phenomena they are intended to address — as they appear in each original result.

By re-expressing the relevant conditions in Table 5 in terms of numerical consumption levels, 
the standard interpretations of these conditions (as formally translated in the right-most column) 
may no longer apply under (11). For example, in the version of the splitting bias from part (vi) of 
Proposition 17, the new condition no longer ensures that the unnormalized value of an alternative 
stays the same when one of its attributes is reframed as two subattributes, i.e. c1a(w) + c1b(w) =
c1(w) does not imply u(c1a(w)) + u(c1b(w)) = u(c1(w)) for w ∈ {x, y}. Despite this issue — 
and similar issues for the other behaviors highlighted in Table 5 — Proposition 17 demonstrates 
that these behaviors are still captured under (11).

Aside from the unnatural interpretations of the conditions in Table 5 when re-expressed in 
terms of numerical consumption levels, the setup underlying Proposition 17 is also limited by 
the fact that the same utility function u is used on all dimensions. After all, different attributes 
could conceivably be evaluated using different utility functions, i.e. with a unique un for each n, 
as is common in the theoretical literature (e.g. Koszegi and Szeidl, 2013; Bushong et al., 2019). 
In light of this, we now modify (11) as follows:

V (x;X) =
N∑ ∑

un(cn(x))
un(cn(x))+un(cn(y))

. (12)

n=1 y∈X\x
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Table 5
Additional conditions on attribute values.

Prop. Behavior Relevant Condition(s) Interpretation

1 Rel. Diff. Effect x′
2 − x2 = y′

2 − y2 A given improvement on attribute 2 provides the 
same increase in unnormalized value regardless of 
whether it is applied to x or y.

5 Splitting Bias w1 = w1a + w1b , w ∈ {x,y} The unnormalized value of an alternative does not 
change if attribute 1 is separated into subattributes 1a 
and 1b.

6 Align. Effect y2 = y′
3 The unnormalized value of y on attribute 2 does not 

change if it is re-expressed on (non-alignable) 
attribute 3.

7 Divers. Bias xn = A
N

for all n,
∑

n x′
n = A An asset’s (total) unnormalized value does not 

depend on how it is allocated across attribute 
dimensions (that are presumed to generate equal 
rates of return).

8 Feature Bias xN = x′
n′ − xn′ > 0 A given improvement provides the same increase in 

unnormalized value regardless of whether it is 
applied to (new) attribute N or to (existing) attribute 
n′.

One complication of allowing attribute-specific utility functions is that the conditions in Ta-
ble 5 — i.e. those used to ensure that the unnormalized value of a given entity does not depend 
on how it is framed or otherwise represented — are even less naturally expressed than with a 
single utility function, as unnormalized attribute values can vary in even more arbitrary ways. 
When considering the splitting bias, for instance, there are no restrictions as to how the subat-
tribute utility functions u1a and u1b relate to the composite utility function u1 (or to each other) 
under (12), despite the fact that the subattributes themselves are simply two components of the 
composite attribute. As a result, even when u1 and c1(x) = c1a(x) + c1b(x) are given, each of the 
subattribute utilities u1a(c1a(x)) and u1b(c1b(x)) can be any positive real number, which makes 
the relationship between u1(c1(x)) and u1a(c1a(x)) +u1b(c1b(x)) impossible to pin down. In our 
analysis of (12), we therefore impose additional restrictions (in two cases) to ensure un does not 
differ across dimensions on which the same underlying component of an alternative may exist.

Proposition 18. Suppose un is strictly increasing and weakly concave with un(0) = 0 for all 
n = 1, . . . , N . Then, if the restrictions on each xn in the following results are instead imposed on 
each corresponding cn(x), the result still holds under (12):

(i) the relative difference effect (Proposition 1);
(ii) the compromise effect (Proposition 2, part i);

(iii) the dominance effect (Proposition 2, part ii, which covers weak and strict versions);
(iv) the decoy-range effect (Proposition 3, part i);
(v) majority-rule preference cycles (Proposition 4);

(vi) the splitting bias (Proposition 5), provided u1 = u1a = u1b also holds;
(vii) the alignability effect (Proposition 6);
(viii) the diversification bias (Proposition 7), provided un = u for all n;
(ix) the feature bias (Proposition 8).
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Proof. By substituting un(cn(x)) for each u(cn(x)) in the corresponding proofs in Proposi-
tion 17, it is readily verifiable that parts (i), (ii), (iii), (iv), (v), (vii), and (ix) still hold. For 
part (vi), the proof is identical to the proof of part (vi) of Proposition 17, provided we substitute 
u1 for each u (note, u2 does not appear in the original proof, so it does not need to be further 
adapted to allow u1 �= u2). Part (viii) is equivalent to part (viii) of Proposition 17, and therefore 
follows from this earlier result. �

Thus, the implications of Proposition 17 extend to the case in which observed consump-
tion levels are translated through attribute-specific utility functions. As seen, however, this 
conclusion requires qualification when considered for the splitting bias and for the diversifi-
cation bias. For the splitting bias (part vi), the additional u1 = u1a = u1b restriction simply 
asserts that the utility function associated with the composite attribute is maintained after the 
attribute has been split. That said, this restriction does not guarantee that composite attribute 
values are equal to the sum of their corresponding subattribute values, i.e. it is still possible that 
u1(c1(w)) �= u1a(c1a(w)) + u1b(c1b(w)) for w ∈ {x, y}. Indeed, it may have been more reason-
able to impose u1(c1(w)) = u1a(c1a(w)) + u1b(c1b(w)) for w ∈ {x, y}, but this would simply 
bring us back to our original result in Proposition 5. As for the diversification bias (part viii), 
the additional restriction simply ensures that, in keeping with our original specification in which 
allocations of the asset were presumed to generate equal returns on all dimensions, the utility 
functions on each dimension must be the same.32 Of course, however, this additional restriction 
just gets us back to the version of the diversification bias in part (viii) of Proposition 17. With 
all that said, even though allowing attribute-specific utility functions in (12) exacerbates the is-
sues of interpretation for all of the conditions listed in Table 5 under (11), Proposition 18 shows 
that the other three affected behavioral predictions — i.e. the relative difference effect (Proposi-
tion 1), the alignability effect (Proposition 6), and the feature bias (Proposition 8) — still hold 
under (12) without any additional restrictions on the attribute-specific utility functions.

Appendix C. Classifying other models’ predictions

This appendix explains how other models’ predictions were classified in Tables 1 and 2. For 
each of the comparable models listed in Table 1, we will describe the value function V (x; X)

used to classify the model’s predictions and demonstrate that it generates the corresponding 
predictions listed in the table (these value functions were also used to generate the corresponding 
graphs shown in Figs. 2 and 4). The models listed in the footnote of Table 1 but not classified 
in the main table will be addressed at the end of this appendix. For the alternate normalization 
models considered in Section 8.1, we will characterize each model’s predictions using (5) along 
with the corresponding definition of r(xn) in Table 2.

For clarity and to facilitate consistent comparisons across models, certain restrictions were 
applied to some models. For instance, we only considered deterministic versions of each model 
and, with one exception (as explained in Section C.6) presumed that attributes are ex-ante sym-
metric, so that any attribute-specific parameters or functions were taken to be the same across 
dimensions. These and other model-specific restrictions (discussed below) may lead to a classi-
fication of ‘Y’ (robustly captures the behavior) or ‘N’ (predicts no effect or the opposite effect) 

32 Without this restriction, we could (as an example) take u1(c1(x)) = 10,000 · c1(x) and u2(c2(x)) = .1 · √c2(x), in 
which case an allocation with c1(x) = c2(x) = 100 would generate grossly unequal returns on dimensions 1 and 2, with 
u1(c1(x)) = 1,000,000 and u2(c2(x)) = 1.
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when a more general version of the model would imply ‘S’ (captures the behavior in some cases, 
but predicts the opposite in other cases). However, these restrictions can never prevent a ‘Y’ or 
‘N’ classification. Thus, if we re-created Table 1 using more general versions of each model, 
each classification would either remain the same or change to ‘S’.

The rules used to classify each prediction are then based on whether or not V (x; X) as given 
for that model predicts the corresponding result as formalized in this paper. In particular, the 
operative definitions used in this analysis are as follows:

• As in part (i) of Proposition 2, the compromise effect is captured if the DM chooses x from 
X = {x, y, z} given: the DM is indifferent between x = (x1, x2) and y = (y1, y2) with X =
{x, y}; x is a compromise between y and z in that z1 > x1 > y1 and y2 > x2 > z2; and z is 
not chosen from X = {x, y, z}.

• As in part (ii) of Proposition 2 with z2 = x2, the “weak” dominance effect is captured if 
the DM chooses x from X = {x, y, z} given: the DM is indifferent between x = (x1, x2) and 
y = (y1, y2) with X = {x, y}; and x asymmetrically dominates z �= x with x1 > z1 > y1 and 
y2 > x2 = z2.

• As in part (ii) of Proposition 2 with z2 < x2, the “strict” dominance effect is captured if 
the DM chooses x from X = {x, y, z} given: the DM is indifferent between x = (x1, x2) and 
y = (y1, y2) with X = {x, y}; and x asymmetrically dominates z �= x with x1 > z1 > y1 and 
y2 > x2 > z2.

• As in part (i) of Proposition 3, the decoy-range effect is captured if the DM chooses x from 
X = {x, y, z′} given: the DM is indifferent between x = (x1, x2) and y = (y1, y2) with X =
{x, y, z}; the DM chooses y from X = {x, y}; x1 > z1 = z′

1 > y1; and y2 > x2 ≥ z2 > z′
2.

• As in Proposition 1, the relative difference effect is captured if the DM chooses x′ from X =
{x′, y′} given: the DM is indifferent between x = (x1, x2) and y = (y1, y2) with X = {x, y}; 
x′ = (x1, x2 + k); and y′ = (y1, y2 + k); and k > 0.

• As in Proposition 4, majority-rule preference cycles are captured if the DM chooses x from 
X = {x, x′}, x′ from X = {x′, x′′}, and x′′ from X = {x, x′′} given: N = 3; x1 > x′

1 > x′′
1 ; x′′

2 >

x2 > x′
2; x′

3 > x′′
3 > x3; and binary-choice preferences among x, x′, and x′′ are intransitive.

• As in Proposition 5, the splitting bias is captured if the DM chooses x′ from X = {x′, y′}
given: the DM is indifferent between x = (x1, x2) and y = (y1, y2) with X = {x, y}; x′ =
(x1a, x1b, x2); y′ = (y1a, y1b, y2); x1a + x1b = x1; y1a + y1b = y1; x1a ≥ y1a ; and x1b ≥ y1b .

• As in Proposition 6, the alignability effect is captured if the DM chooses x′ from X =
{x′, y′} given: the DM is indifferent between x = (x1, x2) and y = (y1, y2) with X = {x, y}; 
min{x1, x2, y1, y2} > 0; x′ = (x1, x2, 0); and y′ = (y1, 0, y2).

• As in Proposition 7, the diversification bias is captured if, for any x′ �= x with 
∑

n≤N x′
n = A, 

the DM chooses x from X = {x, x′} given: N > 1; A > 0; and xn = A
N

for all n ≤ N .

• As in Proposition 8, the feature bias is captured if the DM chooses x from X = {x, x′} given: 
N > 1; q > 0; xN = q; x′

N = 0; x′
n′ = xn′ +q for some n′ < N ; and x′

n = xn > 0 for all other 
n < N .
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C.1. Tversky and Simonson (1993)

For Tversky and Simonson’s (1993) model, we use the following value function (for consis-
tency, we will express other models using the notation of the basic PN model, except where new 
notation is needed)33:

V (x;X) =
N∑

n=1

xn + θ ·
∑

y∈X\x

∑
n max{xn−yn,0}∑

n max{xn−yn,yn−xn} , θ > 0. (13)

Compromise Effect (Y). In (13), V (x; {x, y}) = V (y; {x, y}) if and only if x1 + x2 = y1 + y2. 
Taking x1 + x2 = y1 + y2 = 1 (without loss of generality), we know z1 + z2 = 1 − ω for some 
ω ∈ (0, 1) since z is inferior. In turn, if z makes x a compromise, it is readily verifiable that 
V (x; {x, y, z}) > V (y; {x, y, z}) if and only if z1−x1+ω

2(z1−x1)+ω
>

z1−y1+ω
2(z1−y1)+ω

, which must hold since 
z1 > x1 > y1.

Dominance Effect, Weak (Y) and Strict (Y). Given x1 > z1 > y1 and y2 > x2 ≥ z2, 
V (x; {x, y, z}) > V (y; {x, y, z}) must hold since x1−z1+x2−z2

x1−z1+x2−z2
= 1 > y2−z2

y2−z2+z1−y1
.

Decoy-Range Effect (N). It is also verifiable that the decoy-range effect is captured if 
x1−z1+x2−z2
x1−z1+x2−z2

− y2−z2
y2−z2+z1−y1

= 1 − y2−z2
y2−z2+z1−y1

> 0 is increasing in z2. However, this expression 
is decreasing in z2 since y2 > z2.

Relative Difference Effect (N). Using (13) and with x′ and y′ as defined in Proposition 1, 
V (x; {x, y}) = V (y; {x, y}) implies V (x′; {x′, y′}) = V (y′; {x′, y′}). Thus, the relative difference 
effect is not captured.

Majority-Rule Preference Cycles (N). Using (13), V (x; {x, y}) > V (y; {x, y}) if and only if ∑N
n=1 xn >

∑N
n=1 yn. Since 

∑N
n=1 xn >

∑N
n=1 yn >

∑N
n=1 zn >

∑N
n=1 xn is a contradiction, in-

transitive choice (majority-rule or otherwise) is not possible.

Splitting Bias (N). Using the notation in Proposition 5, V (x′; {x′, y′}) > V (y′; {x′, y′}) under 
(13) if and only if (x1a−y1a)+(x1b−y1b)−(y2−x2)

x1a−y1a+x1b−y1b+y2−x2
>

(x1−y1)−(y2−x1)
x1−y1+y2−x2

, but these expressions are equal 
given x1a + x1b = x1 and y1a + y1b = y1. Thus, the splitting bias is not captured.

Alignability Effect (N). Using the notation in Proposition 6, the alignability effect is captured if 
V (x′; {x′, y′}) > V (y′; {x′, y′}), which holds under (13) if and only if (x1−y1)+(x2−0)−(y2−0)

(x1−y1)+(x2−0)+(y2−0)
> 0. 

However, x1 + x2 = y1 + y2 given V (x; {x, y}) = V (y; {x, y}), implying (x1−y1)+(x2−0)−(y2−0)
(x1−y1)+(x2−0)+(y2−0)

=
0.

Diversification Bias (N). V (x; X) − V (x′; X) ∝ ∑
n≤N max

{
A
N

− x′
n, 0

} − ∑
n≤N max

{
x′
n −

A
N

, 0
} = 0 given X = {x, x′}, ∑n≤N x′

n = A, and xn = A
N

for n ≤ N . Thus, the DM is indifferent 
between x and x′, implying the diversification bias is not captured.

Feature Bias (N). Using the notation in Proposition 8, V (x; {x, x′}) = V (x′; {x, x′}) = q
2q

+∑
n/∈{n′,N} xn under (13). Thus, the DM is indifferent between x and x′.

33 For simplicity, here we take δi (t) = t (in their notation, see page 1885) and omit any influence of “background 
context” (besides the choice set).
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C.2. Kivetz et al. (2004a)

For Kivetz et al.’s (2004a) model, we use:

V (x;X) =
N∑

n=1

(xn − min
x′∈X

{x′
n})c, 0 < c < 1. (14)

Compromise Effect (Y). Noting V (x; {x, y}) = V (y; {x, y}) if and only if x1 + x2 = y1 + y2
under (14), the compromise effect is captured since (x1 − y1)

c + (x2 − z2)
c − (y2 − z2)

c > 0
given (x1 − y1) + (x2 − z2) − (y2 − z2) = x1 + x2 − y1 − y2 = 0 and 0 < c < 1.

Dominance Effect, Weak (N) and Strict (Y). The dominance effect likewise holds as a result 
of (x1 − y1)

c + (x2 − z2)
c − (y2 − z2)

c > 0, provided z2 < x2. If z2 = x2, however, (x1 − y1)
c +

(x2 − z2)
c − (y2 − z2)

c = (x1 − y1)
c − (y2 − x2)

c = 0.

Decoy-range Effect (Y). The decoy-range effect is captured if ∂
∂z2

[
(x2 − z2)

c − (y2 − z2)
c
] =

c((x2 − z2)
c−1 − (y2 − z2)

c−1) > 0, which must hold since y2 > x2 > z2 and c < 1.

Relative Difference Effect (N). Under (14), the relative difference effect holds if ((x1 + k) −
(y1 + k))c > (x1 − y1)

c for k > 0. However, both expressions are clearly equal.

Majority-Rule Preference Cycles (Y). We first provide an example that shows majority-rule 
preference cycles are possible under (14). Namely, if x = (3, 2, 1), x′ = (2, 1, 3), x′′ = (1, 3, 2), 
and c = 1

2 , we can see from 
√

3 − 2 + 
√

2 − 1 − √
3 − 1 = 2 − √

2 > 0 that, in any bi-
nary choice, the DM chooses the alternative that is superior on two out of three dimensions. 
To show that minority-rule preference cycles are not possible, suppose x, x′, x′′ satisfying 
the cyclical majority-dominance property where, without loss of generality, x1 + x2 + x3 =
miny∈{x,x′,x′′}{y1 + y2 + y3}, x′ is superior to x on two out of three attribute dimensions, 
and x1 > x′

1. Hence, if a minority-rule preference cycle exists among x, x′, and x′′, we must 
have δc

1 − δc
2 − δc

3 > 0 for δn = |xn − x′
n|. Since x1 + x2 + x3 = miny∈{x,x′,x′′}{y1 + y2 + y3}, 

δc
1 − δc

2 − δc
3 ≤ (δ2 + δ3)

c − δc
2 − δc

3 while (δ2 + δ3)
c − δc

2 − δc
3 < 0 with 0 < c < 1, a minority-

rule preference cycle is impossible.

Splitting Bias (Y). The splitting bias is likewise captured under (14) since (x1a − y1a)
c +

(x1b − y1b)
c > (x1a + x1b − y1a − y1b)

c = (x1 − y1)
c with 0 < c < 1.

Alignability Effect (N). The alignability effect is likewise captured under (14) since (y2 −
x2)

c + xc
2 > yc

2 with 0 < c < 1, where (as is readily verifiable) this condition ensures 
V (x′; {x′, y′}) > V (y′; {x′, y′}) with x′ and y′ as defined in Proposition 6.

Diversification Bias (N). To show that (14) does not predict the diversification bias, it suffices 
to show an example for which the balanced allocation x is not chosen over x′ �= x given X =
{x, x′}. Take x′

2 = 2A
N

, x′
1 = 0, and x′

n = A
N

for all n > 2. Under (14), we then have V (x; X) =
V (x′; X) = Ac

Nc , implying indifference between x and x′.

Feature Bias (N). Under (14) and using the notation in Proposition 8, V (x; {x, x′}) =
V (x′; {x, x′}) = qc, implying there is no bias in favor of x over x′.
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C.3. Bordalo et al. (2013)

For Bordalo et al.’s (2013) model, we use:

V (x;X) =
∑N

n=1 δ
∑

m�=n I[ρm(x;X)≥ρn(x;X)]·xn∑N
n=1 δ

∑
m�=n I[ρm(x;X)≥ρn(x;X)] , ρn(x;X) =

∣∣∣ xn−x̄n

xn+x̄n

∣∣∣, 0 < δ < 1, (15)

where x̄n ≡ ||X||−1 ∑
x∈X xn is the mean attribute value in X on dimension n. This formula-

tion uses the degree-zero homogeneous salience function given in equation (4) of Bordalo et 
al. (2013), which is denoted here as ρn(x; X). For the special case of binary choice (taking 
X = {x, y}) with two attributes, the model in (15) reduces to:

V (x;X) =

⎧⎪⎨⎪⎩
δx1+x2

1+δ
, ρ1(x;X) < ρ2(x;X),

x1 + x2, ρ1(x;X) = ρ2(x;X),

x1+δx2
1+δ

, ρ1(x;X) > ρ2(x;X),

ρn(x;X) =
∣∣∣ xn−yn

3xn+yn

∣∣∣. (16)

As mentioned in the footnote of Table 4, Bordalo et al.’s model could be evaluated using a ver-
sion in which one attribute is the price of the alternative or using a version in which all attributes 
represent different quality dimensions. To facilitate consistent comparisons across models, here 
we consider the latter version.34

Compromise Effect (S). To show that (15) sometimes predicts the compromise effect and 
sometimes predicts the opposite, it suffices to use examples. For instance, with δ = .5, the DM 
is indifferent between x and y in binary choice but chooses x in trinary choice if x = (3, .5), 
y = (2, 1), and z = (3.2, 0), in which case a compromise effect is predicted, while the DM is 
indifferent between x and y in binary choice but chooses y in trinary choice if x = (1, 2), y =
(.5, 3), and z = (1.2, 0), in which case the opposite effect is predicted.

Dominance Effect, Weak (S) and Strict (S). Maintaining δ = .5, it is similarly verifiable that 
the DM is indifferent between x and y in binary choice but chooses x in trinary choice if x =
(3, .5), y = (2, 1), and z = (2.8, 0), in which case a dominance effect with a strictly dominated 
decoy is predicted, while the DM is indifferent between x and y in binary choice but chooses y
in trinary choice if x = (1, 2), y = (.5, 3), and z = (.8, 0), in which case the opposite effect is 
predicted. In turn, the DM is indifferent between x and y in binary choice but chooses x in trinary 
choice if x = (2, 1), y = (.5, 3), and z = (.75, 1), in which case a dominance effect with a weakly 
dominated decoy is predicted, while the DM is indifferent between x and y in binary choice but 
chooses y in trinary choice if x = (3, .5), y = (1, 2), and z = (1.5, .5), in which case the opposite 
effect is predicted.

34 Following very similar arguments and examples as those used here, it is readily verifiable that all of the Table 1
classifications for Bordalo et al.’s model would be the same for the version of their model with price as an attribute, with 
the possible exception of the diversification bias, which would (depending on how a model with price as an attribute was 
translated to the formal setting considered in Proposition 7) either: (a) no longer be testable, since allocating an equal 
share of an asset A to a price dimension — formally, allocating more to this dimension would mean a higher price paid 
— would be unnatural and in violation of the “equal returns” assumption (i.e. there would be a negative return on this 
dimension and a positive return on others), or (b) would be unchanged if we presume that both allocations have the same 
price (which may naturally be the case if the asset represents a consumption budget or a monthly contribution to a savings 
plan, as examples) and where the asset itself can only be allocated to the remaining quality dimensions. In this case, the 
salience of each alternative’s price would be zero, according to ρ as defined in (15), so that the salience rankings of the 
quality dimensions for each alternative would be the same as the rankings with price omitted from the model.
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Decoy-Range Effect (S). Take x = (5, 1), y = (3, 2), z = (4.6, 1), and z′ = (4.6, .5) with 
δ = .5. We can then compute V (x; {x, y, z}) = V (y; {x, y, z}) = V (y; {x, y, z′}) = 7

3 and 
V (x; {x, y, z′}) = 11

3 , implying (15) predicts the decoy-range effect in this scenario. Now take 
x = (4, 3), y = (1, 9), z = (1.25, 3), and z′ = (1, 25, 0), with δ = .5. We can then compute 
V (x; {x, y, z}) = V (y; {x, y, z}) = V (x; {x, y, z′}) = 11

3 and V (y; {x, y, z′}) = 19
3 , implying (15)

predicts the opposite of the decoy-range effect in this scenario.

Relative Difference Effect (S). Maintaining δ = .5 while taking x = (2.5, .75) and y = (2, 1), 
so that x′ = (2.5, .75 + k), and y′ = (2, 1 + k), we can see that the DM is indifferent in a binary 
choice between x and y. In particular, we can use (16) to compute ρ1(x; X) = 1

19 < 1
13 = ρ2(x; X)

and ρ1(y; X) = 1
17 < 1

15 = ρ2(y; X), implying V (x; X) = .5·2.5+.75
1.5 = 4

3 = .5·2+1
1.5 = V (y; X). 

Next, we can verify that in a binary choice between x′ and y′, y′ is chosen if k = .25 since 
(16) implies ρ1(x′; X′) = 1

19 < 1
17 = ρ2(x′; X′) and ρ1(y′; X′) = 1

17 > 1
19 = ρ2(y′; X′), implying 

V (x′; X′) = .5·2.5+.75
1.5 = 4

3 < 5
3 = 2+.5·1

1.5 = V (y′; X′) with k = .25. If k = .5, however, x′ is cho-
sen since (16) implies ρ1(x′; X′) = 1

19 > 1
21 = ρ2(x′; X′) and ρ1(y′; X′) = 1

17 > 1
23 = ρ2(y′; X′), 

implying V (x′; X′) = 2.5+.5·.75
1.5 = 23

12 > 5
3 = 2+.5·1

1.5 = V (y′; X′) with k = .5. Thus, the model cap-
tures the relative difference effect with k = .5 as well as its opposite with k = .25.

Majority-Rule Preference Cycles (S). Take x = (2, 1, 0), x′ = (1, 0, 2), x′′ = (0, 2, 1) and 
δ = .5. Then a minority-rule preference cycle will exist where V (x; {x, x′}) = V (x′; {x′, x′′}) =
V (x′′; {x, x′′}) = δ+2δ2

1+δ+δ2 = 4
7 and V (x′; {x, x′}) = V (x′′; {x′, x′′}) = V (x; {x, x′′}) = 2δ+δ2

1+δ+δ2 =
5
7 > 4

7 . If we instead take x = (20, 4, 1), x′ = (4, 1, 20), and x′′ = (1, 20, 4) while main-

taining δ = .5, then V (x; {x, x′}) = V (x′; {x′, x′′}) = V (x′′; {x, x′′}) = 1+20δ+4δ2

1+δ+δ2 = 48
7 and 

V (x′; {x, x′}) = V (x′′; {x′, x′′}) = V (x; {x, x′′}) = 4+δ+20δ2

1+δ+δ2 = 38
7 < 48

7 , in which case a majority-
rule preference cycle will exist.

Splitting Bias (S). Maintaining δ = .5, take x = (3, .5) and y = (2, 1), implying x′ = (x1a, 3 −
x1a, .5) and y′ = (y1a, 2 − y1a, 1). Then it is readily verifiable that the DM is indifferent in a 
binary choice between x and y under (15) and that, in a binary choice between x′ and y′, x′ is 
chosen if x1a = .5, which captures the splitting bias, while y′ is chosen if k = .25, which captures 
the opposite.

Alignability Effect (S). Maintaining δ = .5, we can verify that the alignability effect is captured 
under (15) if x = (6, 1) and y = (3, 2) but the opposite effect is predicted if x = (2, 1) and 
y = (1, 2).

Diversification Bias (S). Here, we show that the diversification bias is always captured for 
N = 2 and never captured for N > 2. Given X = {x, x′}, with N = 2 it is readily verifiable 
that V (x; X) = A

2 . Without loss of generality, suppose x′
1 < x′

2, implying x′
2 = A − x′

1. Then 

ρ1(x′; X) = A−2x′
1

A+6x′
1

and ρ2(x′; X) = A−2x′
1

7A−6x′
1
, implying ρ1(x′; X) > ρ2(x′; X) since 7A − 6x′

1 >

A − 2x′
1 given x′

1 < x′
2 = A − x′

1. Hence, V (x; X) = x′
1+δ(A−x′

1)

1+δ
< A

2 = V (x; X), as we can ver-
ify through cross-multiplication given 2x′

1 < A, implying the diversification bias is captured. For 
N > 2, suppose x′

1 = x′
2 = 3A

4N
, x′

3 = 3A
2N

, and x′
n = xn for all n > 3. We then have ρ1(x′; X) =

ρ2(x′; X) = 1 < 1 = ρ3(x′; X), implying V (x′; X) = A · 3(1+δ2)+2(N−3)δN−1

2 N−1 > A = V (x; X), 
13 11 N 2+4δ +2(N−3)δ N
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with the inequality holding for all δ < 1 since 3(1 + δ2) > 2 + 4δ2, contradicting the diversifica-
tion bias.

Feature Bias (Y). To show that the feature bias is robustly captured under (15), note that 
ρn′(x; X) = q

4xn′+q
given X = {x, x′}, ρN(x; X) = 1

3 , ρn′(x′; X) = q
4xn′+3q

, and ρN(x′; X) =
1, where x and x′ are defined as in Proposition 8. We can also see ρn(x; X) = ρn(x′; X) = 0

for all n /∈ {n′, N}. From this, we get V (x′; X) = δ(xn′+q)+δN−1 ∑
n/∈{n′,N} xn

1+δ+(N−2)δN−1 . If q
4xn′+q

= 1
3 , then 

V (x; X) = δ(xn′+q)+δN−1 ∑
n/∈{n′,N} xn

2δ+(N−2)δN−1 , ensuring V (x; X) > V (x′; X) given δ < 1. If q
4xn′+q

�= 1
3 , 

then V (x; X) ≥ min{xn′+δq,δxn′+q}+δN−1 ∑
n/∈{n′,N} xn

1+δ+(N−2)δN−1 , which also ensures V (x; X) > V (x′; X) since 
min{xn′ + δq, δxn′ + q} > δ(xn′ + q). Thus, x must be chosen over x′, capturing the feature bias.

C.4. Koszegi and Szeidl (2013)

For Koszegi and Szeidl’s (2013) model, we use:

V (x;X) =
N∑

n=1

h
(
max
x′∈X

{x′
n} − min

x′∈X
{x′

n}
) · xn, (17)

where h is strictly increasing.

Compromise Effect (N). We can readily verify that the compromise effect holds under (17) if 
h(z1 −y1) ·(x1 −y1) > h(y2 −z2) ·(y2 −x2). Given V (z; {y, z}) < V (y; {y, z}), y2 −z2 > z1 −y1
must hold, while binary-choice indifference between x and y implies x1 − y1 = y2 − x2. Thus, 
the above condition is violated since h(y2 − z2) > h(z1 − y1) with h increasing.

Dominance Effect — Weak (N) and Strict (N). The dominance effect holds under (17) if h(x1 −
y1) · (x1 − y1) > h(y2 − z2) · (y2 − x2). Since z2 ≤ x2, x1 − y1 = y2 − x2, and h is increasing, 
this condition cannot hold.

Decoy-Range Effect (N). Given y2 > x2 ≥ z2, ∂
∂z2

[
V (x, {x, y, z}) − V (y, {x, y, z})] = (y2 −

x2)h
′(y2 −z2) > 0 under (17). Thus, if the DM is indifferent between x and y given X = {x, y, z}, 

y must be chosen from X = {x, y, z′} with z′
1 = z1 and z′

2 < z2, which is the opposite of the 
decoy-range effect.

Relative Difference Effect (N). The relative difference effect holds if h((y2 + k) − (x2 + k)) ·
((y2 +k) − (x2 +k)) is decreasing in k ≥ 0. Since h((y2 +k) − (x2 +k)) · ((y2 +k) − (x2 +k)) =
h(y2 −x2) · (y2 −x2), the expression is clearly independent of k, implying the relative difference 
effect is not captured.

Majority-Rule Preference Cycles (N). To allow majority-rule preference cycles while preclud-
ing minority-rule preference cycles, it suffices to show that V (x, {x, z}) > V (z, {x, z}) for any x
and z satisfying x1 > z1, x2 > z2, and x1 + x2 + x3 = z1 + z2 + z3 with N = 3. Noting these 
conditions imply z3 > x3 and z3 − x3 = x1 + x2 − z1 − z2 while letting δn ≡ xn − zn > 0 for 
n = 1, 2, under (17) we have V (x, {x, z}) − V (z, {x, z}) = (h(δ1) − h(δ1 + δ2)) · δ1 + (h(δ2) −
h(δ1 + δ2)) · δ2. Thus, V (x, {x, z}) − V (z, {x, z}) > 0 cannot hold since h(δ1 + δ2) > h(δn) for 
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n = 1, 2 with h(·) increasing, implying majority-rule preference cycles are not captured under 
(17).

Splitting Bias (N). Letting δa = x1a − y1a and δb = x1b − y1b , we can see that the splitting 
bias is captured under (17) if (h(δa) − h(δa + δb)) · δa + (h(δb) − h(δa + δb)) · δb > 0, but this 
condition cannot hold since h(δa + δb) > max{h(δa), h(δb)} with h increasing.

Alignability Effect (N). Since binary-choice indifference between x and y implies x1 + x2 =
y1 + y2 under (17), x1 − y1 = y2 − x2. We can then see that the alignability effect is captured 
if (h(y2 − x2) − h(y2)) · (y2 − x2) + (h(x2) − h(y2)) · x2 > 0, which cannot hold since h(y2) >
max{h(x2), h(y2 − x2)} with h(·) increasing.

Diversification Bias (N). To show that (17) does not predict the diversification bias, suppose 
x′

1 = 0, x′
2 = 2A

N
, and x′

n = A
N

for all n > 2. Then, with xn = A
N

for all n ≤ N and X = {x, x′}, we 
get V (x; X) −V (x′; X) = h

(
A
N

−0
) ·( A

N
−0

)−h
( 2A

N
− A

N

) ·( 2A
N

− A
N

) = h
(

A
N

) · A
N

−h
(

A
N

) · A
N

=
0, implying indifference between x and x′.

Feature Bias (N). With the new feature, x has an effective advantage of h(q) · q on dimension 
N . With the improved existing feature, x′ has an effective advantage of h(xn′ + q − xn′) · (xn′ +
q −xn′) = h(q) ·q on dimension n′. Since these advantages are equal under (17), V (x; {x, x′}) =
V (x′; {x, x′}) must hold, implying the feature bias is not captured.

C.5. Bushong et al. (2019)

For Bushong et al.’s (2019) model, we use V (x; X) as given in (17), except now h is strictly 
decreasing and h(z) · z is strictly increasing in z.

Compromise Effect (Y). As before, the compromise effect holds if h(z1 − y1) · (x1 − y1) >
h(y2 − z2) · (y2 − x2). Given V (z; {y, z}) < V (y; {y, z}), y2 − z2 > z1 − y1 must hold, while 
binary-choice indifference between x and y implies x1 −y1 = y2 −x2. Thus, the above condition 
holds (ensuring a compromise effect) since h(y2 − z2) < h(z1 − y1) given h is decreasing.

Dominance Effect, Weak (N) and Strict (Y). The dominance effect holds if h(x1 − y1) · (x1 −
y1) > h(y2 − z2) · (y2 − x2). Since x1 − y1 = y2 − x2 and h is decreasing, the condition holds 
for z2 < x2 but not for z2 = x2. Thus, the dominance effect is captured for a strictly dominated 
decoy z but not if z is only weakly dominated.

Decoy-Range Effect (Y). As seen, ∂
∂z2

[
V (x, {x, y, z}) −V (y, {x, y, z})] = (y2 −x2)h

′(y2 −z2)

given y2 > x2 ≥ z2 under (17), except now (y2 − x2)h
′(y2 − z2) < 0 since h′(y2 − z2) < 0. Thus, 

with indifference between x and y given X = {x, y, z}, x will be chosen from X = {x, y, z′} with 
z′

1 = z1 and z′
2 < z2, capturing the decoy-range effect.

Relative Difference Effect (N). Same as Koszegi and Szeidl (2013) — see above.

Majority-Rule Preference Cycles (Y). To allow majority-rule preference cycles while preclud-
ing minority-rule preference cycles, it suffices to show V (x, {x, z}) > V (z, {x, z}) for any x and z
satisfying x1 > z1, x2 > z2, and x1 +x2 +x3 = z1 + z2 + z3 with N = 3. Noting these conditions 
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imply z3 > x3 and z3 − x3 = x1 + x2 − z1 − z2 while letting δn ≡ xn − zn > 0 for n = 1, 2, under 
(17) we have V (x, {x, z}) − V (z, {x, z}) = (h(δ1) − h(δ1 + δ2)) · δ1 + (h(δ2) − h(δ1 + δ2)) · δ2. 
Thus, V (x, {x, z}) − V (z, {x, z}) > 0 must hold since h(δ1 + δ2) < h(δn) for n = 1, 2 given h is 
decreasing, implying majority-rule preference cycles are robustly captured.

Splitting Bias (Y). Given δa = x1a − y1a and δb = x1b − y1b , the splitting bias is captured if 
(h(δa) − h(δa + δb)) · δa + (h(δb) − h(δa + δb)) · δb > 0, which must hold since h(δa + δb) <
min{h(δa), h(δb)} with h decreasing.

Alignability Effect (Y). Since binary-choice indifference between x and y implies x1 + x2 =
y1 + y2 under (17), x1 − y1 = y2 − x2. Using this relation, we can then see that the alignability 
effect is captured if (h(y2 − x2) −h(y2)) · (y2 − x2) + (h(x2) −h(y2)) · x2 > 0, which must hold 
since h(y2) < min{h(x2), h(y2 − x2)} with h decreasing.

Diversification Bias (N). Same as Koszegi and Szeidl (2013) — see above.

Feature Bias (N). Same as Koszegi and Szeidl (2013) — see above.

C.6. Soltani et al. (2012)

For Soltani et al.’s (2012) model, which assumes that alternatives are defined on two attribute 
dimensions, we use the following value function:

V (x;X) = w1 · x1−minx′∈X{x′
1}

maxx′∈X{x′
1}−minx′∈X{x′

1} + w2 · x2−minx′∈X{x′
2}

maxx′∈X{x′
2}−minx′∈X{x′

2} . (18)

For simplicity, this formulation assumes that the “representation factors” are zero (i.e. fs = ft =
0, in their notation). It also assumes that the attribute weights w1, w2 > 0 are the same for all 
alternatives, but it still allows w1 �= w2. The reason we do not impose w1 = w2 is that (18)
would then imply that the DM must be indifferent between x = (x1, x2) and y = (y1, y2) in 
binary choice given x1 > y1 and y2 > x2.

Compromise Effect (S). Applied to (18), and given x1 > y1 and y2 > x2, the DM is in-
different between x and y in binary choice if and only if w1 = w2. Taking w1 = w2 = 1
with X = {x, y, z}, and given z makes x a compromise, we see V (x; X) = x1−y1

z1−y1
+ x2−z2

y2−z2
, 

V (y; X) = y1−y1
z1−y1

+ y2−z2
y2−z2

= 1, and V (z; X) = z1−y1
z1−y1

+ z2−z2
y2−z2

= 1. Since V (y; X) = V (z; X), 

z is not chosen, while x is chosen if and only if x1−y1
z1−y1

+ x2−z2
y2−z2

> 1. Letting x = (1, 1), y = (0, 2), 
and z = (z1, 0), it is then readily verifiable that this condition holds for z1 < 2, in which case 
(18) predicts a compromise effect, but is violated for z1 > 2, in which case the opposite effect is 
predicted.

Dominance Effect, Weak (N) and Strict (Y). Again taking w1 = w2 = 1 (without loss of 
generality given binary-choice indifference between x and y), if x asymmetrically dominates 
z, x will be chosen from X = {x, y, z} if and only if V (x; X) > V (y; X), where V (x; X) =
x1−y1
x1−y1

+ x2−z2
y2−z2

= 1 + x2−z2
y2−z2

and V (y; X) = y1−y1
x1−y1

+ y2−z2
y2−z2

= 1. Thus, V (x; X) > V (y; X) if 
x2 > z2, but not if x2 = z2.

Decoy-Range Effect (N). In the decoy-range effect, the DM chooses y over x in binary choice, 
which (it is readily verifiable) holds under (18) if and only if w2 > w1 (since V (x; {x, y}) =
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w1 · x1−y1
x1−y1

+ w2 · x2−x2
y2−x2

= w1 and V (x; {x, y}) = w1 · y1−y1
x1−y1

+ w2 · y2−x2
y2−x2

= w2). The DM is also 
indifferent between x and y given X = {x, y, z}, with x1 > z1 > y1 and y2 > x2 ≥ z2. Noting 
that, in this case, V (x; {x, y, z}) − V (y; {x, y, z}) = w1

( x1−y1
x1−y1

− y1−y1
x1−y1

) + w2
(

x2−z2
y2−z2

− y2−z2
y2−z2

) =
w1 +w2

(
x2−z2
y2−z2

−1
)
, the decoy range effect is captured if and only if ∂

∂z2

(
w1 +w2

(
x2−z2
y2−z2

−1
)) =

w2 · x2−y2
(y2−z2)

2 < 0, which must hold since y2 > x2.

Relative Difference Effect (N). Using (18) and with x′ and y′ as defined in Proposition 1, 
V (x; {x, y}) = V (y; {x, y}) implies w1 = w2, which implies V (x′; {x′, y′}) = V (y′; {x′, y′}). 
Thus, the relative difference effect is not captured.

Majority-Rule Preference Cycles (-), Splitting Bias (-), Alignability Effect (-). As formalized 
here, majority-rule preference cycles, the splitting bias, and the alignability effect can only be 
expressed with a model that allows more than two attributes. Since Soltani et al.’s (2012) model 
assumes that alternatives are defined on two dimensions, it does not make predictions regarding 
these behavioral effects.35

Diversification Bias (N). Since N = 2 under (18), the balanced allocation in Proposition 7 is 
x = (

A
2 , A2

)
. To show that the diversification bias is never captured, it suffices to show that there is 

always a x′ �= x with x′
1 + x′

2 = A such that V (x; {x, x′}) ≤ V (x′; {x, x′}) under (18). If w1 > w2, 
we can take x′ = (A, 0), in which case V (x; {x, x′}) = w2 < V (x′; {x, x′}) = w1. If w1 < w2, we 
can take x′ = (0, A), in which case V (x; {x, x′}) = w1 < V (x′; {x, x′}) = w2. Lastly, if w1 = w2, 
we can take any x′ = (x′

1, x
′
2) with x′

1 + x′
2 = A, in which case V (x; {x, x′}) = V (x′; {x, x′}) =

w1 = w2.

Feature Bias (S). Since N = 2 under (18), the alternatives in Proposition 8 are x = (x1, q)

and x′ = (x1 + q, 0) with q > 0. We can then use (18) to compute V (x; {x, x′}) = w2 and 
V (x′; {x, x′}) = w1. Thus, the feature bias is captured if w2 > w1, but not if w1 > w2.

C.7. Joint normalization

We now consider the “joint normalization” model given in (5) with r(xn) = ∑
x′∈X\x x′

n.

Compromise Effect (N). Given y2 = x1x2
y1

(Proposition 16) and X = {x, y, z}, r(xn) =∑
x′∈X\x x′

n implies V (x; X) − V (y; X) = (x1−y1)(y1z2−z1x2)
(x1+y1+z1)(x1x2+y1x2+y1z2)

. With z1 > x1 > y1 and 
z2 < x2, y1z2 − z1x2 < 0 must hold. This, along with x1 > y1, ensures that the compromise 
effect cannot be captured with r(xn) = ∑

x′∈X\x x′
n.

35 That said, it may be reasonable to consider the following extension of the model in (18) to three attributes: V (x; X) =∑3
n=1 wn · xn−minx′∈X{x′

n}
maxx′∈X{x′

n}−minx′∈X{x′
n} . It is then straightforward to show that this model robustly captures majority-rule 

preference cycles. However, this model still cannot make concrete predictions regarding the splitting bias because the 
valuations of x′ and y′ in Proposition 5 would depend on the weighting parameters w1a and w1b , while binary-choice 
indifference between x and y does not restrict w1a and w1b . Similarly, the implied valuations of x′ and y′ in Proposition 6
would depend on w3, but this parameter is not restricted by binary-choice indifference between x and y, implying this 
extension of Soltani et al.’s model also does not make concrete predictions regarding the alignability effect.
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Dominance Effect, Weak (N) and Strict (N). Given y2 = x1x2
y1

(Proposition 16) and X =
{x, y, z}, r(xn) = ∑

x′∈X\x x′
n implies V (x; X) − V (y; X) = (x1−y1)(y1z2−z1x2)

(x1+y1+z1)(x1x2+y1x2+y1z2)
. With z1 >

y1 and z2 ≤ x2, y1z2 − z1x2 < 0 holds. This, with x1 > y1, ensures the dominance effect with 
z2 = x2 or z2 < x2 cannot be captured with r(xn) = ∑

x′∈X\x x′
n.

Decoy-Range Effect (N). Given r(xn) = ∑
x′∈X\x x′

n and X = {x, y, z}, we can compute 
∂[V (x;X)−V (y;X)]

∂z2
= y2−x2

(x2+y2+z2)
2 > 0, which ensures that the decoy-range effect cannot be captured 

with r(xn) = ∑
x′∈X\x x′

n.

Relative Difference Effect (Y), Majority-Rule Preference Cycles (Y), Splitting Bias (Y), 
Alignability Effect (Y), Diversification Bias (Y), and Feature Bias (Y). As established in the 
proof of Proposition 16, V (x; {x, x′}) > V (x′; {x, x′}) holds (for any N ) under joint normaliza-
tion if and only if V (x; {x, x′}) > V (x′; {x, x′}) holds under (1). Therefore, all of these effects 
(which are formalized in terms of binary choices) must be captured by maximum normalization 
since they are captured by pairwise normalization.

C.8. Average normalization

We now consider “average normalization” as given in (5) with r(xn) = ||X||−1 ∑
x′∈X x′

n.

Compromise Effect (S). To show that average normalization sometimes predicts the com-
promise effect and sometimes predicts the opposite, suppose x = (2, 1), y = (1, 2), and z =
(2.1, z2). Then, if z2 = 0, r(xn) = ||X||−1 ∑

x′∈X x′
n implies V (x; {x, y, z}) − V (x; {x, y, z}) ≈

.0035 > 0, consistent with the compromise effect. If z2 = .6, r(xn) = ||X||−1 ∑
x′∈X x′

n implies 
V (x; {x, y, z}) − V (x; {x, y, z}) ≈ −.00028 < 0, which is the opposite of the compromise ef-
fect (we can also verify V (x; {x, y, z}) − V (z; {x, y, z}) ≈ .11 > 0 in this case, ensuring z is not 
chosen in trinary choice).

Dominance Effect, Weak (S) and Strict (S). To show that average normalization some-
times predicts the dominance effect and sometimes predicts the opposite, suppose x = (2, 1), 
y = (1, 2). Then r(xn) = ||X||−1 ∑

x′∈X x′
n implies V (x; {x, y, z}|z = (2, .5)) − V (x; {x, y, z}|z =

(2, .5)) ≈ .00041 > 0 and V (x; {x, y, z}|z = (1.9, .5)) −V (x; {x, y, z}|z = (1.9, .5)) ≈ .000671 >
0, consistent with the weak and strict dominance effects. However, r(xn) = ||X||−1 ∑

x′∈X x′
n also 

implies V (x; {x, y, z}|z = (2, .7)) − V (x; {x, y, z}|z = (2, .7)) ≈ −.000341 < 0 and V (x; {x, y,

z}|z = (1.9, .7)) − V (x; {x, y, z}|z = (1.9, .7)) ≈ −.000084 < 0, in which case the average nor-
malization model predicts the opposite of the weak and strict dominance effects.

Decoy-Range Effect (Y). Since V (x; X) is invariant to re-scaling all x′
n with x′ ∈ X on a 

given dimension by the same positive constant, it suffices to show that the result holds with 
x = (1 + 2μγ, 1 − 2γ ) and y = (1 − 2μγ, 1 + 2γ ) (which effectively sets the average of xn and 
yn to 1 on each dimension), where γ ∈ (

0, 12
]

and μ ∈ (0, 1) since V (x; {x, y}) < V (y; {x, y}). 
We can then let z = ((1 − β)x1 + βy1, λx2) with β ∈ [0, 1) and λ ∈ [0, 1] with either 
β > 0 or λ < 1 (or both), so that x asymmetrically dominates z. Using these definitions, we 
can then compute ∂[V (x;{x,y,z})−V (y;{x,y,z}]

∂z2
= 12γ (1−2γ )G(λ,γ )

((5+(1−2γ )λ)2−36γ 2)2 with G(λ, γ ) ≡ 4 − 9(1 −
4γ 2) + 4λ(1 − 2γ ) + λ2(1 − 2γ )2. It then suffices to show V (x; {x, y, z}) ≥ V (y; {x, y, z}
implies ∂[V (x;{x,y,z})−V (y;{x,y,z}]

< 0, or equivalently, G(λ, γ ) < 0. Now ∂G(λ,γ ) ≥ 0 since 

∂z2 ∂λ
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γ ≤ 1
2 . Therefore, G(λ, γ ) is maximized at λ = 1, implying that it suffices to show that ei-

ther G(λ, γ ) < 0 or V (x; {x, y, z}) < V (y; {x, y, z}) must hold with λ = 1. Now G(1, γ ) =
4γ (10γ − 3), implying G(1, γ ) < 0 for all γ < 3

10 . Next, V (x;{x,y,z}|λ=1)−V (y;{x,y,z}|λ=1)
∂μ

=
27γH(μ,β,γ )

(3+2μ(2−β)γ )2(3−2μ(1+β)γ )2 , where H(μ, β, γ ) ≡ 3 + 4μ(1 − 2β)γ + 4μ2(1 − β + β2)γ 2. 

Thus, ∂[V (x;{x,y,z}|λ=1)−V (y;{x,y,z}|λ=1)]
∂μ

> 0 if and only if H(μ, β, γ ) > 0. Next, observe 
∂H(μ,β,γ )

∂β
= −4μγ (2 + μ(1 − 2β)γ ) < 0 since μ, β, γ < 1. Thus, H(μ, β, γ ) is minimized 

at H(μ, 1, γ ) = 3 − 4μγ + 4μ2γ 2. Noting ∂H(μ,1,γ )
∂μ

= −4γ (1 − 2μγ ) < 0 since μ < 1 and 

γ ≤ 1
2 , H(μ, 1, γ ) must be minimized at H(1, 1, γ ) = 2 + (1 − 2γ )2 > 0. Thus, H(μ, β, γ ) > 0

for all μ, β, γ , which implies ∂[V (x;{x,y,z}|λ=1)−V (y;{x,y,z}|λ=1)]
∂μ

> 0. Thus, it suffices to show that 

V (x; {x, y, z}|μ = λ = 1) − V (y; {x, y, z}|μ = λ = 1) = − 12(1−β)γ 3(8γ−3β+2βγ )
(3+2γ )(3−4γ )(3+2(2−β)γ )(3−2(1+β)γ )

<

0 for all γ > 3
10 . Since β < 1 and γ ≤ 1

2 , we can see this condition reduces to − 8γ−3β+2βγ
3−2(1+β)γ

< 0, 
which then holds if min{8γ − 3β + 2βγ, 3 − 2(1 + β)γ } > 0. Since 8γ − 3β + 2βγ > 0 for all 
β <

8γ
3−2γ

, 3 − 2(1 + β)γ > 0 for all β <
3−2γ

2γ
, and 8γ

3−2γ
≤ 3−2γ

2γ
(since 16γ 2 ≤ 4 ≤ (3 − 2γ )2

with γ ≤ 1
2 ), the condition further reduces to β <

8γ
3−2γ

. Since 8γ
3−2γ

is increasing in γ (by 

inspection) and 8γ
3−2γ

= 1 > β given γ = 3
10 , β <

8γ
3−2γ

must hold for all γ ≥ 3
10 , as desired.

Relative Difference Effect (Y). The relative difference effect must be captured under average 
normalization because (a) it is captured under (1) (Proposition 1), and (b) binary choices are 
equivalent under average normalization and (1) (Proposition 16).

Majority-Rule Preference Cycles (Y). First it is readily verifiable that a majority-rule pref-
erence cycle is possible under average normalization by taking, for example, x = (2, 1, 0), 
x′ = (1, 0, 2), and x′′ = (0, 2, 1). To show that the opposite, minority-rule preference cycle cannot 
hold, we proceed by contradiction.

Next, suppose yn = 0 for some n and y ∈ {x, x′, x′′}, and z ∈ {x, x′, x′′} \ y is the alternative 
that is better than y on two of three dimensions. Without loss of generality, suppose y1 = 0 < z1, 
0 ≤ y2 < z2, and y3 > z3. Then V (z; {z, y}) − V (y; {z, y}) = �(z1, 0) + �(z2, y2) − �(y3, z3). 
However, this must be positive since �(z1, 0) = 2

3 ≥ �(y3, z3) with �(z2, y2) > 0 given r(xn) =
||X||−1 ∑

x′∈X x′
n. This implies that a minority rule preference cycle cannot exist if yn = 0 for

some n and y ∈ {x, x′, x′′}.
Now, assuming from here on that all attribute values are nonzero, if a minority-rule prefer-

ence cycle exists, there must be at least one alternative that is chosen even though the product 
of its attribute values is weakly less than the product of the other alternative’s attribute values. 
That is, there must be some y ∈ {x, x′, x′′} and z ∈ {x, x′, x′′} \ y for which: (a) z is better than 
y on two of three dimensions; (b) z1z2z3 ≥ y1y2y3, and (c) V (y; {z, y}) > V (z; {z, y}). Without 
loss of generality, suppose z1 > y1, z2 > y2, and y3 > z3. Then define y′ such that y′

n = yn for 
n = 1, 2 and y′

3 = z1z2z3
y1y2

≥ y3. Then, a necessary condition for V (y; {z, y}) > V (z; {z, y}) to hold 

is that V (y′; {z, y′}) > V (z; {z, y′}). Next, let a = y′
1

z1
< 1 and b = y′

2
z2

< 1, implying z3
y3

= ab. 

We can then use (5) with r(xn) = ||X||−1 ∑
x′∈X x′

n to compute V (z; {z, y′}) − V (y′; {z, y′}) =
2(1−a)(1−b)(1−ab)(9(1+b)+9a2b(1+b)+a(9−22b+9b2))

(3+a)(1+3a)(3+b)(1+3b)(3+ab)(1+3ab)
. Thus, V (z; {z, y′}) − V (y′; {z, y′}) > 0 if and 

only if 9(1 + b) + 9a2b(1 + b) + a(9 − 22b + 9b2) > 0. Without loss of generality, suppose 
b ≤ a, and let b = λa with λ ∈ [0, 1]. With this substitution, we then see that V (z; {z, y′}) −
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V (y′; {z, y′}) > 0 is equivalent to Z(a, λ) ≡ 9 − 22a2λ + 9a4λ2 + 9a(1 + λ) + 9a3λ(1 + λ) >
0. Next, we can see that λ = λ∗(a) ≡ −9+22a−9a2

18a2(1+a)
uniquely solves the first-order condition, 

∂Z(a,λ)
∂λ

= 0. We can then observe Z(a, λ∗(a)) = (9−a)(9a−1)(9+2a+9a2)
36a(1+a)

< 0 if and only if a < 1
9 . 

We can also observe λ∗(a) > 0 can only hold if −9 + 22a − 9a2 > 0, which cannot be the case 
with a < 1

9 since −9 + 22a − 9a2 < −9 + 22a < −9 + 22
9 < 0 given a < 1

9 . Thus, since the so-
lution to λ∗ does not apply, for Z(a, λ) < 0 to hold, it must hold at one of the bounds, λ ∈ {0, 1}. 
However, Z(a, 0) = 9(1 + a) > 0 and Z(a, 1) = 5 + 4(1 − a2) + 18a(1 − a) + 18a3 + 9a4 > 0. 
Therefore, Z(a, λ) > 0 must hold for all applicable a, λ, implying V (z; {z, y′}) −V (y′; {z, y′}) >
0 must hold, thus guaranteeing V (z; {z, y}) − V (y; {z, y}) > 0 and contradiction the presumed 
minority-rule preference cycle. This establishes that only majority-rule preference cycles can be 
captured.

Splitting Bias (Y). Let λa ≡ y1a

x1a
, λb ≡ y1b

x1b
, and λ ≡ y1

x1
. We can then use (5) with r(xn) =

||X||−1 ∑
x′∈X x′

n to compute V (x′; {x′, y′}) −V (y′; {x′, y′}) = x1a

x1a+.5(x1a+y1a)
− y1a

y1a+.5(x1a+y1a)
+

x1b

x1b+.5(x1b+y1b)
− y1b

y1b+.5(x1b+y1b)
− x1

x1+.5(x1+x2)
+ y1

y1+.5(x1+x2)
, which reduces to V (x′; {x′, y′}) −

V (y′; {x′, y′}) = 2+3λa−λ2
a

3+10λa+3λ2
a
+ 2+3λb−λ2

b

3+10λb+3λ2
b

− 2+3λ−λ2

3+10λ+3λ2 = f (λa) +f (λb) −f (λ), where f (s) =
2+3s−s2

3+10s+3s2 ≥ 0 for s ∈ [0, 1]. Now f ′(s) = − 11+18s+19s2

(3+10s+3s2)2 < 0. Since the definitions of λa , λb , and 
λ ensure min{λa, λb} ≥ λ (binding if and only if λa = λb = λ), it follows that f (λa) + f (λb) >
max{f (λa), f (λb)} ≥ f (λ), ensuring V (x′; {x′, y′}) − V (y′; {x′, y′}) > 0, implying the splitting 
bias is captured under average normalization.

Alignability Effect (S). Using y2 = x1x2
y1

given V (x; {x, y}) = V (y; {x, y}) (Proposition 16), the 

alignability effect holds with r(xn) = ||X||−1 ∑
x′∈X x′

n since V (x′; {x′, y′}) − V (y′; {x′, y′}) =
x1

x1+.5(x1+y1)
+ x2

x2+.5x2
− y1

y1+.5(x1+y1)
− y2

y2+.5y2
= 2(x1−y1)(x1+y1)

(3x1+y1)(x1+3y1)
> 0.

Diversification Bias (Y). Given xn = A
N

for all n, suppose x′
n > xn and let �+

n = x′
n−xn

xn
. 

Using (5) with r(xn) = ||X||−1 ∑
x′∈X x′

n, we can compute x′’s advantage over x on n as A+
n ≡

x′
n

x′
n+.5(xn+x′

n)
− xn

xn+.5(xn+x′
n)

= 2�+
n (2+�+

n )

(4+�+
n )(4+3�+

n )
, implying ∂[A+

n /�+
n ]

∂�+
n

= − 1
2(4+�+

n )2 − 3
2(4+3�+

n )2 <

0. Noting limx′
n→xn

{ A+
n

�+
n

} = 1
4 , it then follows that A+

n <
�+

n

4 given x′
n > xn.

Now suppose x′
n < xn and let �−

n = xn−x′
n

xn
. Using (5) with r(xn) = ||X||−1 ∑

x′∈X x′
n, we can 

then compute x’s advantage over x′ on n as A−
n ≡ xn

xn+.5(xn+x′
n)

− x′
n

x′
n+.5(xn+x′

n)
= 2�−

n (2−�−
n )

(4−�−
n )(4−3�−

n )
. 

Next, we can compute ∂[A−
n /�−

n ]
∂�−

n
= 1

2(4−�−
n )2 + 3

2(4−3�−
n )2 > 0. Noting limx′

n→xn

{ A−
n

�−
n

} = 1
4 , it 

then follows that A−
n >

�−
n

4 given x′
n < xn.

Now let �+ = ∑N
n=1 �+

n · I[x′
n > xn], �− = ∑N

n=1 �−
n · I[x′

n < xn], A+ = ∑N
n=1 A+

n · I[x′
n >

xn], and A− = ∑N
n=1 A−

n · I[x′
n < xn]. We can then see that x is chosen over x′ �= x as long as 

A− > A+. From our above work, we then see A− >
∑N

n=1
�−

n

4 · I[x′
n < xn] = �−

4 , and A+ <∑N
n=1

�+
n

4 · I[x′
n > xn] = �+

4 . Furthermore, given 
∑N

n=1 xn = ∑N
n=1 x′

n = A and xn = A
N

for all 
n, it must be the case that �+ = �−. This ensures A− > A+, implying the diversification bias is 
captured under average normalization.
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Feature Bias (Y). Given x and x′ are as defined in Proposition 8, let y = (xn′ , q) and 
y′ = (xn′ + q, 0) where n′ is the dimension with x′

n′ = xn′ + q . Using (5) with r(xn) =
||X||−1 ∑

x′∈X x′
n, we can verify V (x; {x, x′}) − V (x′; {x, x′}) = V (y; {y, y′}) − V (y′; {y, y′}), 

which must be positive from Proposition 16 since y1y2 = xn′q > 0 = (xn′ + q) · 0 = y′
1y

′
2, which 

ensures the feature bias holds under average normalization.

C.9. Maximum normalization

We now consider “maximum normalization” as given in (5) with r(xn) = maxx′∈X{x′
n}.

Compromise Effect (N). Given y2 = x1x2
y1

(Proposition 16), z1 > x1, and z2 < x2, (5) with 
r(xn) = maxx′∈X{x′

n} implies V (x; {x, y, z}) −V (y; {x, y, z}) = x1
x1+z1

+ x2
x2+y2

− y1
y1+z1

+ y2
y2+y2

=
x1

x1+z1
− x1

x1+x1
+ y1

y1+x1
− y1

y1+z1
= − (x1−y1)(z1−y1)(z1−x1)

(2(x1+z1)(y1+z1)(y1+x1))
< 0, implying the compromise effect 

is not captured under maximum normalization.

Dominance Effect, Weak (N) and Strict (N). Given z1 < x1, and z2 ≤ x2, (5) with r(xn) =
maxx′∈X{x′

n} implies V (x; {x, y, z}) − V (y; {x, y, z}) = x1
x1+x1

+ x2
x2+y2

− y1
y1+x1

+ y2
y2+y2

=
V (x; {x, y}) −V (y; {x, y}) = 0, implying the weak and strict dominance effects are not captured.

Decoy-Range Effect (N). Given z1 < x1, and z2 ≤ x2, ∂[V (x;{x,y,z})−V (y;{x,y,z})]
∂z2

= 0 under (5)
with r(xn) = maxx′∈X{x′

n}, implying the decoy-range effect is not captured.

Relative Difference Effect (Y), Majority-Rule Preference Cycles (Y), Splitting Bias (Y), 
Alignability Effect (Y), Diversification Bias (Y), and Feature Bias (Y). As established in the 
proof of Proposition 16, V (x; {x, x′}) > V (x′; {x, x′}) holds (for any N ) under maximum nor-
malization if and only if V (x; {x, x′}) > V (x′; {x, x′}) holds under (1). Therefore, all of these 
effects (which are formalized in terms of binary choices) are captured by maximum normaliza-
tion since they are captured by pairwise normalization.

C.10. Minimum normalization

We now consider “minimum normalization” as given in (5) with r(xn) = minx′∈X{x′
n}.

Compromise Effect (Y). Given y2 = x1x2
y1

(Proposition 16), z1 > x1, and z2 < x2, (5) with 
r(xn) = minx′∈X{x′

n} implies V (x; {x, y, z}) −V (y; {x, y, z}) = x1
x1+y1

+ x2
x2+z2

− y1
y1+y1

+ y2
y2+z2

=
x2

x2+z2
− x2

x2+x2
+ y2

y2+x2
− y2

y2+z2
= (x1−y1)(x2−z2)(x1x2−y1z2)

2(x1+y1)(x2+z2)(x1x2+y1z2)
. This last expression is positive since 

x1 > y1 and x2 > z2 (noting these inequalities also ensure x1x2 > y1z2), implying the compro-
mise effect is captured under minimum normalization.

Dominance Effect, Weak (N) and Strict (Y). Given y2 = x1x2
y1

(Proposition 16), x1 > z1 >

y1, and z2 ≤ x2, (5) with r(xn) = minx′∈X{x′
n} again implies V (x; {x, y, z}) − V (y; {x, y, z}) =

x1
x1+y1

+ x2
x2+z2

− y1
y1+y1

+ y2
y2+z2

= x2
x2+z2

− x2
x2+x2

+ y2
y2+x2

− y2
y2+z2

= (x1−y1)(x2−z2)(x1x2−y1z2)
2(x1+y1)(x2+z2)(x1x2+y1z2)

. 
We can then see that this last expression equals zero if z2 = x2, implying the weak dominance 
effect is not captured under (5) with r(xn) = minx′∈X{x′

n}. We can also see that this expression is 
otherwise positive with x1 > y1 and x2 > z2 (again noting these inequalities also ensure x1x2 >

y1z2), implying the strict dominance effect is captured under minimum normalization.
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Decoy-Range Effect (Y). Given z1 < x1, and z2 ≤ x2, ∂[V (x;{x,y,z})−V (y;{x,y,z})]
∂z2

=
(y2−x2)(z

2
2−x2y2)

(x2+z2)
2(y2+z2)

2 under (5) with r(xn) = minx′∈X{x′
n}. This expression must be negative since 

y2 > x2 > z2, implying the decoy-range effect is captured.

Relative Difference Effect (Y), Majority-Rule Preference Cycles (Y), Splitting Bias (Y), 
Alignability Effect (Y), Diversification Bias (Y), and Feature Bias (Y). As established in the 
proof of Proposition 16, V (x; {x, x′}) > V (x′; {x, x′}) holds (for any N ) under minimum normal-
ization if and only if V (x′; {x, x′}) > V (x; {x, x′}) holds under (1). Therefore, all of these effects 
(which are formalized in terms of binary choices) are captured by minimum normalization since 
they are captured by pairwise normalization.

C.11. Max-min normalization

We now consider “max-min normalization” as given in (5) with r(xn) = maxx′∈X{x′
n} −

minx′∈X{x′
n}.

Compromise Effect (S). To show that max-min normalization sometimes predicts the com-
promise effect and sometimes predicts the opposite, suppose x = (2, 1), y = (1, 2), and z =
(2.1, z2). Then, if z2 = 0, (5) with r(xn) = maxx′∈X{x′

n} − minx′∈X{x′
n} implies V (x; {x, y, z}) −

V (x; {x, y, z}) ≈ .0023 > 0, consistent with the compromise effect. If z2 = .2, (5) with r(xn) =
maxx′∈X{x′

n} − minx′∈X{x′
n} implies V (x; {x, y, z}) − V (x; {x, y, z}) ≈ −.0002 < 0, which is the 

opposite of the compromise effect (we can also verify V (x; {x, y, z}) −V (z; {x, y, z}) ≈ .25 > 0, 
ensuring z is not chosen).

Dominance Effect, Weak (N) and Strict (S). With y2 > x2 = z2 and x1 > z1 > y1, r(xn) =
maxx′∈X{x′

n} − minx′∈X{x′
n} for n = 1, 2 is not affected by the inclusion of z in X. Thus, 

V (x′; {x, y, z}) = V (x′; {x, y}) = 0 for x′ ∈ {x, y}, implying that max-min normalization does not 
predict a dominance effect in this case. To show that max-min normalization sometimes predicts 
the dominance effect and sometimes predicts the opposite with x1 > z1 > y1 and y2 > x2 > z2, 
first verify x = (3, 1), y = (1, 3), and z = (2, .5) implies V (x; {x, y, z}) − V (x; {x, y, z}) ≈
.0069 > 0, consistent with the dominance effect. However, x = (2, 1), y = (1, 2), and z =
(1.5, .5) implies V (x; {x, y, z}) − V (x; {x, y, z}) ≈ −.0048 > 0, which is the opposite of the 
dominance effect.

Decoy-Range Effect (Y). To show that the decoy-range effect is captured under max-min nor-
malization, first note that x1 > z1 > y1 and y2 > x2 = z2 imply max{x′

n : x′ ∈ {x, y, z}} ∈ {xn, yn}
and min{x′

n : x′ ∈ {x, y, z}} ∈ {xn, yn} for each n = 2. It then follows that, with V (y; {x, y}) >
V (x; {x, y}), V (y; {x, y, z}) > V (x; {x, y, z}) must hold given x1 > z1 > y1 and y2 > x2 =
z2. Next, given z2 = min{x′

2 : x′ ∈ {x, y, z}}, we can compute ∂[V (x;{x,y,z})−V (y;{x,y,z})]
∂z2

=
x2

(x2+y2−z2)
2 − y2

(2y2−z2)
2 under (5) with r(xn) = maxx′∈X{x′

n} − minx′∈X{x′
n}. We can then see 

that ∂[V (x;{x,y,z})−V (y;{x,y,z})]
∂z2

< 0 if and only if z2 < y2 − √
x2y2. This implies z2 < y2 − √

x2y2
for V (y; {x, y}) > V (x; {x, y}) and V (x; {x, y, z}) = V (y; {x, y, z}) to both hold with z asym-
metrically dominated by x under (5) with r(xn) = maxx′∈X{x′

n} − minx′∈X{x′
n}. Next, given 

V (y; {x, y}) > V (x; {x, y}), V (x; {x, y, z}) = V (y; {x, y, z}), z′
1 = z1, and z′

2 < z2, we must have 
V (x; {x, y, z′}) > V (y; {x, y, z′}) since z′

2 < z2 < y2 − √
x2y2 and ∂[V (x;{x,y,z})−V (y;{x,y,z})]

∂z2
< 0

for all z2 < y2 − √
x2y2. Thus, the decoy-range effect is captured with max-min normalization.
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Relative Difference Effect (Y). The relative difference effect must be captured because (a) 
it is captured under (1) (Proposition 1), and (b) binary choices are equivalent under (5) with 
r(xn) = maxx′∈X{x′

n} − minx′∈X{x′
n} and (1) (Proposition 16).

Majority-Rule Preference Cycles (S). To show that max-min normalization sometimes pre-
dicts majority-rule preference cycles and sometimes predicts the opposite, suppose x = (a, b, c), 
x′ = (b, c, a), and x′′ = (c, a, b) with a = 1 and b = .5. Then, if c = .2, V (x; {x, x′}) −
V (x′; {x, x′}) = V (x′; {x′, x′′}) − V (x′′; {x′, x′′}) = V (x′′; {x, x′′}) − V (x; {x, x′′}) = 13

360 > 0
under (5) with r(xn) = maxx′∈X{x′

n} − minx′∈X{x′
n}, thus generating a majority-rule prefer-

ence cycle. If c = .4, (5) with r(xn) = maxx′∈X{x′
n} − minx′∈X{x′

n} implies V (x; {x, x′}) −
V (x′; {x, x′}) = V (x′; {x′, x′′}) − V (x′′; {x′, x′′}) = V (x′′; {x, x′′}) − V (x; {x, x′′}) = − 1

40 < 0, 
in which case there is a minority-rule preference cycle instead.

Splitting Bias (Y). Using (5) with r(xn) = maxx′∈X{x′
n} − minx′∈X{x′

n}, V (x′; {x′, y′}) −
V (y′; {x′, y′}) = (δa)2

x1a(δa+x1a)
+ (δb)2

x1b(δ
b+x1b)

− (δa+δb)2

(x1a+x1b)(δ
aδb+x1a+x1b)

with δa = x1a − y1a and 

δb = x1b − y1b . Combining the right-side fractions, we see V (x′; {x′, y′}) − V (y′; {x′, y′}) =
(x1aδb)2(x1a(2δa+δb+2x1b)+φ)+(x1bδ

a)2(φ′+x1b(δ
a+2δb+2x1a))+(x2

1bδ
a−x2

1aδb)2

x1a(δa+x1a)x1b(δ
b+x1b)(x1a+x1b)(δ

aδb+x1a+x1b)
, where φ ≡ δa(δa + δb +

x1b) and φ′ ≡ δb(δa + δb + x1a). Since all terms in both the numerator and the denominator 
are positive, this final expression must be positive, implying the splitting bias is captured under 
max-min normalization.

Alignability Effect (Y). Using (5) with r(xn) = maxx′∈X{x′
n} − minx′∈X{x′

n} and y2 = x1x2
y1

(as implied by Proposition 16) with x′ and y′ as defined in Proposition 6, we can compute 

V (x′; {x′, y′}) − V (y′; {x′, y′}) = (x1−y1)
2

x1(2x1−y1)
> 0, which ensures the alignability effect holds un-

der max-min normalization.

Diversification Bias (S). Here, we show that the diversification bias is always captured for N =
2 but may not be captured with N > 2. Given X = {x, x′}, with N = 2 it is readily verifiable that 
(5) with r(xn) = maxx′∈X{x′

n} − minx′∈X{x′
n} implies V (x; {x, x′}) −V (x′; {x, x′}) = 2δ3

(1+δ)(1+2δ)
, 

where δ = |x1−x′
1|

x1
. Thus, V (x; {x, x′}) − V (x′; {x, x′}) > 0 for all x′ �= x with N = 2, consistent 

with the diversification bias. However, suppose N = A = 5 (implying x = (1, 1, 1, 1, 1)) and 
x′ = ( 10

6 , 56 , 56 , 56 , 56
)
. We can then compute V (x; {x, x′}) − V (x′; {x, x′}) = − 2

105 < 0 under (5)
with r(xn) = maxx′∈X{x′

n} − minx′∈X{x′
n}, implying the diversification bias is not captured in this 

case.

Feature Bias (Y). Given x x′ are as defined in Proposition 8, let y = (xn′ , q) and y′ = (xn′ +
q, 0) where n′ is the dimension for which x′

n′ = xn′ + q . Using (5) with r(xn) = maxx′∈X{x′
n} −

minx′∈X{x′
n}, we can verify V (x; {x, x′}) − V (x′; {x, x′}) = V (y; {y, y′}) − V (y′; {y, y′}), which 

must be positive from Proposition 16 since y1y2 = xn′q > 0 = (xn′ + q)0 = y′
1y

′
2, ensuring the 

feature bias holds under max-min normalization.

C.12. Discussion of other models

As mentioned in the footnote of Table 1, there are other notable models addressing context-
dependent choice — in particular, the compromise and/or dominance effects — besides those 
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whose predictions were explicitly classified in Table 1. Here, we briefly describe other notable 
theories, and address the relevant differences in structure and/or domain that make them less 
amenable to direct behavioral comparisons with our model.

To begin, in Kamenica’s (2008) model, a compromise effect can arise as a rational response 
to information asymmetries between consumers and a monopolist firm. Specifically, consumers 
who are initially uninformed of their preferences can infer from a trinary choice set — repre-
senting the firm’s (endogenously-chosen) product line — that their preferences correspond to a 
“type” for which the intermediate option is optimal, while such inferences cannot be made from a 
binary choice set. Among other key differences with our single decision-maker model, Kameni-
ca’s model features a continuum of consumers who are heterogeneous in their preferences and in 
whether or not they are initially informed of their preferences, as well as a monopolist firm that 
endogenously chooses its product line. In addition, consumers who exhibit a compromise effect 
in Kamenica’s model infer from the presence of the third alternative that, in the current state, 
some consumers prefer that third alternative even though those who exhibit a compromise effect 
do not. It is therefore less clear how a dominance effect could arise through such “contextual in-
ference” unless consumers can prefer a dominated alternative over an alternative that dominates 
it. Furthermore, alternatives in Kamenica’s model are only defined on two dimensions (quality 
and price), so behavioral patterns requiring the consideration of more than two attributes (e.g. 
majority-rule preference cycles) are outside its scope.

Next, De Clippel and Eliaz (2012) model two-attribute choice as an intra-personal bargaining 
problem, where two “selves” disagree on the relative importance of the two attributes. In trinary 
choice, the two selves ultimately settle on the alternative that is not the worst on any dimension, 
giving rise to a compromise effect as well as a dominance effect. Behaviors requiring the con-
sideration of more than two attributes are not addressed by this model, and it is not clear how 
it would be adapted to a N -attribute setting (presumably requiring N -selves). Perhaps, however, 
the key behavioral feature — a “fallback” bargaining outcome that favors an alternative that is 
not worst on any dimension — could be generalized. Still, this mechanism would not explain 
binary-choice phenomena such as majority-rule preference cycles, the diversification bias, and 
the feature bias (as formalized in Propositions 4, 7, and 8) in which both alternatives under con-
sideration are worst on at least one dimension.

In another approach, Ok et al. (2015) axiomatically characterize a reference-dependent model 
capturing a form of the attraction effect that, unlike most other theories, does not require 
exogenously-defined attributes. Since our model and the behaviors it addresses are — as with 
the large majority of theories addressing such context-dependent behaviors — formalized in 
terms of exogenously-defined attributes, its predictions are not amenable to direct comparisons 
with the predictions of Ok et al.’s model.

Guo (2016) proposes a model in which the presented choice set endogenously determines 
the extent to which a rational consumer engages in costly deliberation as a means to learn their 
own preferences. As Guo demonstrates, this “contextual deliberation” mechanism can produce 
a compromise effect. As in Kamenica’s (2008) model — and unlike our approach — Guo’s 
model features consumers who are imperfectly informed of their own preferences, while context-
dependent behavior arises through context-dependent learning. In addition, Guo’s model and our 
model address somewhat different behaviors. For instance, Guo’s model captures choice overload 
effects, which are not typically addressed by multi-attribute choice models (including ours), but 
does not consider the dominance effect.

Lastly, in Natenzon’s (2019) model, an imperfectly-informed decision-maker can exhibit 
probabilistic forms of the compromise and dominance effects. Since context-dependence in this 
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model is driven by correlations among stochastic perceptual errors in valuation, its predictions 
are not amenable to classification according to the deterministic criteria used to classify behav-
ior in Table 1.36 Even if that were not an issue, the usefulness of classifying the predictions 
of Natenzon’s model with respect to the behaviors in Table 1 may still be questionable since 
its predictions are highly dependent on the values of its parameters, but unlike the theoretical 
models considered, Natenzon’s model is primarily empirical, and its parameters are meant to be 
estimated.

Appendix D. Model restrictions in Fig. 2

This appendix describes parametric and functional form assumptions used to create the graphs 
in Fig. 2 (as well as Fig. 4) for the Tversky and Simonson (1993), Kivetz et al. (2004a), 
Soltani et al. (2012), and Bordalo et al. (2013) models. As noted in the text, these graphs depicted 
each model’s predicted effect of adding a third alternative z on the DM’s relative valuation of two 
alternatives, x and y, which are equally-valued in binary choice. With one exception (addressed 
below), we used x = (2, 1) and y = (1, 2) to generate the graphs in Fig. 2. In turn, the paramet-
ric and functional form assumptions described below were selected due to their simplicity and 
adherence to the more general restrictions of the model to which they were applied.

Tversky and Simonson (1993). To generate the graph for Tversky and Simonson’s (1993)
model, we used the value function (13) described in Appendix C. For any θ > 0, it is then readily 
verifiable under (13) that, with x = (2, 1) and y = (1, 2) and X = {x, y, z},

V (x;X) − V (y;X) ∝ max{2−z1,0}+max{1−z2,0}
|2−z1|+|1−z2| − max{1−z1,0}+max{2−z2,0}

|1−z1|+|2−z2| ,

which generates the regions shown in Fig. 2 for Tversky and Simonson’s (1993) model.

Kivetz et al. (2004a). To generate the graph for Kivetz et al.’s (2004a) model, we used the 
value function (14) described in Appendix C. It is then readily verifiable under (14) that, with 
x = (2, 1) and y = (1, 2) and X = {x, y, z},

V (x;X) − V (y;X) =
2∑

n=1

(3 − n − min{1, zn})c − (n − min{1, zn})c,

which, taking any c ∈ (0, 1), generates the regions shown in Fig. 2 for the Kivetz et al. (2004a)
model.

Soltani et al. (2012). To generate the graph for Soltani et al.’s (2012) model, we used the 
value function (18), along with the additional restriction wn = w > 0 for n = 1, 2. It is then 
readily verifiable under (18) that, with x = (2, 1) and y = (1, 2) and X = {x, y, z},

V (x;X) − V (y;X) = w
max{z1,2}−min{z1,1} − w

max{z2,2}−min{z2,1} ,

which generates the regions shown in Fig. 2 for the Soltani et al. (2012) model.

36 That is to say, if stochastic perceptual errors were excluded from Natenzon’s model, choice behavior would no longer 
be context-dependent, making the classification exercise trivial. By contrast, the stochastic components of Kivetz et al.’s 
(2004a) model could be omitted (without loss of insight) when classifying its predictions because context-dependence 
arises through its deterministic components.
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Bordalo et al. (2013) — Two Quality Attributes. To generate the graph for Bordalo et al.’s 
(2013) model with alternatives defined on two quality dimensions, we used the value function 
(15) described in Appendix C. It is then readily verifiable under (15) that, with x = (2, 1) and 
y = (1, 2) and X = {x, y, z},

V (x;X) − V (y;X) = 2δgx (z)+δ1−gx (z)

δgx (z)+δ1−gx (z) − δgy (z)+2δ1−gy (z)

δgy (z)+δ1−gy (z) ,

where gx(z) ≡ I
[ |3−z1|

9+z1
> z2

6+z2

]
and gy(z) ≡ I

[
z1

6+z1
>

|3−z2|
9+z2

]
. We can then see that, for any 

δ ∈ (0, 1), these expressions generate the regions shown in Fig. 2.

Bordalo et al. (2013) — Price and Quality. To generate the graph for Bordalo et al.’s (2013)
model with alternatives defined by its price and a single quality attribute, we used x = (px, qx) =
(1, 1) and y = (py, qy) = (2, 2) while otherwise applying the same restrictions in (15), which can 
still be applied with price as an attribute simply by treating the price of z ∈ {x, y} as a negative 
quality attribute with value −pz. Given X = {x, y, z}, the predicted value difference between x
and y in trinary choice is then

V (x;X) − V (y;X) = δ1−gx (z)−δgx (z)

δgx (z)+δ1−gx (z) − 2 · δ1−gy (z)−δgy (z)

δgy (z)+δ1−gy (z) ,

where now gx(z) ≡ I[pz > qz] and gy(z) ≡ I
[ |3−pz|

9+pz
<

|3−qz|
9+qz

]
. In turn, these expressions (again, 

with any δ ∈ (0, 1)) generate the regions shown in Fig. 2.
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