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I. Introduction  

 

This chapter presents a neuroeconomic theory (i.e. a simplified computational 

model) of habitual choice. While grounded in neural mechanisms of habit, the theory 

accounts for some basic facts about consumer behavior (with interesting new predictions).  

To understand how insights from neuroscience can be used in economics more 

generally, we define economics as the analysis of consequential human choices under 

scarcity and institutional constraints, including their causes and impacts on human 

welfare. This definition is crafted to constrain the ingredients of an economic theory, but 

still permits a lot of variation. For example, even though the definition refers to humans, 

human biology has much in common with the biology of other animals (especially other 

primates). Evidence from other animals – e.g. through species-general reactions to visual 

designs, mental states, group dynamics, or status incentives – can therefore help inform 

economic theories. Also note, this definition does not privilege a particular type of data or 

methodology, in contrast to assertions such as “revealed preference earns such a central 

role in economics because this [choice] is the form of evidence that is available to 

economists” (Gul and Pesendorfer, 2008).   

   

a. Three levels of understanding  
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 A guiding methodological framework for neuroeconomics is the three-level analysis 

introduced by the vision scientist David Marr (1982). Marr was interested in how we “see” 

the world around us, but was frustrated by how little scientific attention was paid to 

integrating the mechanistic details of vision (i.e. the anatomy and physiology of the visual 

system) with a description of their function (i.e. how we might program a computer to see). 

Marr wrote: “trying to understand perception by understanding neurons is like trying to 

understand a bird’s flight by studying only feathers. It just cannot  be done” (p. 27).  

Marr described three levels at which behavior can be understood. The highest level,  

functionality (our preferred term, though Marr referred to this as “computation”), 

addresses why the brain is organized in a particular way to solve some problem facing the 

organism. The middle level, algorithm, explains what is computed to serve this function. 

The lowest level, implementation, describes how this computation is executed through 

biological processes. Returning to the example of bird flight, Krakauer et al. (2017) suggest 

that flight — useful for evading predators, nesting, and migration — is the highest-level 

function of the bird’s biological system; the middle-level “algorithm” to achieve flight can 

be described by the equations that govern the flapping of wings; the lowest-level 

“implementation” then refers to the precise biological mechanisms used by the bird to flap 

its wings.  

 The key premise of this three-level framework is that behavior can only be well 

understood if it is well understood at all three levels. This suggests that theoretical models 

of behavior should be compatible with evidence at all three levels; it also suggests that the 

representation of behavior at each level should be informed by the representations at other 

levels.1 In our view, Marr’s three-level framework can and should be applied to the social 

sciences, though microeconomic theories of individual choice often neglect the lowest 

levels of algorithm and implementation, while focusing only on describing behavior at the 

functional level (if only partially). 

 
1 As an illustration, hummingbirds do not fly solely as a mode of transport. They also hover to reach 
otherwise inaccessible nectar sources (functionality). To serve this alternate function, hummingbirds 
beat their wings far more rapidly than other birds while generating lift on both up and down beats 
(algorithm). Meanwhile, hummingbirds’ rapid wing-beating is made possible by disproportionately 
large pectoralis muscles (implementation). 
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For example, consider standard choice theories featuring agents who make choices 

that maximize their subjective utility. These theories only partially address — through 

behavioral axioms — the functional question of why agents maximize utility as they do not 

incoporate relevant constraints on attention and cognition. Given two organisms, the one 

that most efficiently allocates scarce cognitive resources in processing utility-relevant 

information will have an advantage — even if it might make some mistakes. And of course 

standard utility theories are silent on the algorithms that people might use to implement 

(or approximate) utility maximization, and their actual physical implementation subject to 

biophysical constraints.    

 A few economic theories have taken on the challenge of integrating Marr’s three 

levels, using different methods. One path derives the types of utility functions that would 

emerge under selective pressure in particular choice environments (e.g. Robson, 2002, 

Rayo & Becker, 2007).2 As an example, it is commonly held that risks are valued by 

weighting the utility of separate outcomes by their subjective probabilities. Risk aversion is 

formally captured by a concave utility function. But, again, what adaptive purpose does 

concave utility serve? In fact, why even have a utility function at all? Robson (2001) 

answers this question in a setting where evolutionary fitness is determined by a simple 

two-armed bandit problem (e.g. a choice between which of two fields to forage in on a 

given day). In such a simple setting, it is optimal to choose the field with the higher 

probability of yielding the most berries. Therefore one might surmise that evolutionary 

forces would simply select for agents who always choose this field; essentially hard-wiring 

this action. But such a trait would clearly be sub-optimal in a world in which the 

fruitfulness of the fields can change. In this world, Robson shows that a fitness-maximizing 

agent should be endowed with a utility function over outcomes.3 This is a functional 

argument for describing behavior consistent with utility maximization. 

 
2 Alternative approaches include expanding the functional question to include constraints on attention, 
as in the rational inattention literature (Woodford, 2020; Caplin & Dean, 2015), as well using 
implementational knowledge to inform the maximization algorithm (Fehr & Rangel, 2011; Webb, 2019; 
Landry & Webb, 2021).  Hebert & Woodford (2021) and Frydman & Jin (2021) link some of these 
insights together. 
3 Moreover, the shape of the utility function is determined by the energy requirements required for 
procreation (or in the language of economics, the “baby production function” must be concave). 



 4 

So how might utility-maximizing behavior be implemented at the algorithmic level? 

When agents do not know the probabilities in a bandit task a priori – and must therefore 

learn them – simple reinforcement learning (RL) algorithms offer computationally efficient 

solutions (Sutton & Barto, 1998). In a RL model, the agent samples a bandit and updates an 

associated value based on the outcome. This updating is implemented through a reward 

prediction error, reflecting the difference between the realized reward and the predicted 

value of the bandit. Eventually, as the agent repeatedly samples from each bandit, the 

associated value functions will converge to the true expected reward.4 Remarkably, 

neuroscience research has shown that these reward prediction errors are encoded in the 

brain through the activity of dopamine neurons (Schultz, Dayan, & Montague, 1997; 

Glimcher, 2011). These studies, which form some of the foundational results in the field of 

neuroeconomics, thus describe the neural computations for implementing reinforcement 

learning — an algorithm that can generate behavior consistent with utility maximization.5 

In fact, binding together these restults at all three levels is considered one of the great 

successes of Marr’s approach (Niv & Langdon, 2016). 

In the following section, we will examine how these same neural signals are used to 

guide habitual behavior, in which an individual automatically repeats a previous action. 

While such thoughtless repetition of behavior may seem to diverge from principles of 

utility maximization, in stable reward environments it might be efficient to automate 

decision-making to continue choosing an alternative that has been optimal in the past, thus 

 
4 How well this algorithm performs depends on the properties of the environment (like the variance of 
its reward distribution, or in the case of foraging, the prevalence of extreme events like drought). But 
generally these algorithms perform well when agents are forced to explore with some small probability,  
ensuring that the agent does not initially reject a bandit simply because of a few poor outcomes.  
Remarkably, this algorthm also works well when the reward distribution is non-stationary; the 
exploration probability ensures that all bandits will be continuously sampled, implementing a tradeoff 
between exploiting learned information and exploring for more valuable actions. The simplicity of this 
algorithm, and its ability to guide behaviour in such tasks, has spawned the growing field of machine 
learning (Sutton & Barto, 1998). 
5 However, this system can also go awry. Anything that changes reward prediction error can change 
learned subjective values and causally affect choice. One amazing demonstration used optogenetics— 
using light to locally turn activity in small ensembles of neurons up and down.  Steinberg et al. (2013) 
trained rats in a standard conditioning test pressing levers for rewards of sugar or water. By optically 
stimulating ventral tegmental area (VTA) dopaminergic neurons, they created artificial subjective RPE 
signals for low-reward outcomes. The rats behaved as if water was sugar. There is no way to explain this 
in conventional economic theory because it requires a mechanistic account of what brain area encodes 
RPE and how RPE’s can be artificially created.  



 5 

foregoing the costly cognitive processes of collecting utility-related information and 

consulting one’s utility-ranking for the Nth time. However it would also be important to 

have a mechanism for turning off a faulty habit when conditions change. The goal of this 

chapter is to bind together these ideas and evidence on habitual choice at all three levels of 

Marr’s analysis, while clarifying the broader goal of neuroeconomics as follows: 

Neuroeconomics seeks to identify the algorithms of economic choice that 

achieve high-level functional goals, and are actually implemented by neural 

circuitry and other biological mechanisms (such as genes and hormones). 

II.  Habit  

A healthy person going about their day is constantly shifting between highly 

automatic, “habitual” behavior and interruptions for thoughtful deliberation. For example, 

as Sharon gets in the car for the Monday morning commute, she plunks her home-brewed 

coffee in the drink-holder, fastens her seatbelt, punches FM station setting 2, and backs out 

of the driveway. She has done this many times before, and she does so now with minimal 

attention and possibly without even remembering having done many of the steps.  She is 

using habitual control.  

On her way to work, suppose the radio station alerts her to terrible traffic on 

highway 134 in Burbank. Construction began last week and is expected to continue for two 

more weeks. If Sharon is deep in habit mode, she does not even process the radio 

announcement. She gets stuck in traffic and then encodes a negative “prediction error” (a 

gap between the driving outcome she experienced today and what she experienced in the 

past). After a few days of getting stuck in traffic – perhaps only one day, if she learns 

quickly – she will be jolted out of her habit and contemplate potential alternate routes for 

her commute. 

But what if Sharon had only made this commute for a few days, and had not yet 

formed a habit? In this case, Sharon would process the initial traffic alert using a cognitive 

system that quickly sprouts decision trees representing different route options. The trees 

include a “staying on Highway 134” branch, which Sharon expects will lead to bad 
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outcomes (such as “frustration”, and “late for work”) as a result of terrible traffic. Sharon’s 

mind rapidly starts thinking through alternate branches and chooses a new route based on 

the expected quality of outcomes associated with these newly-imagined branches. She’ll 

exit highway 134, take a Cahuenga detour, and stop at a favorite coffee shop. She can call 

into her 9 am meeting from there.  

Our neuroeconomic theory of habit posits that behavior is the output of one two 

neurally-distinct systems for choice.6 In habit mode, people who face a familiar choice 

situation make the same choice they did the last time if that choice was reliably rewarding. 

The habit mode is fast, implicit (i.e., often not conscious), and can make optimal choices in a 

sufficiently stationary world. By contrast, in a model-based mode people use a subjective 

representation (or model) of how their actions in different states correspond to likely 

outcomes, and the value of those outcomes.7 This mode is slow, is more likely to be 

conscious (or “explicit” in psychological language, i.e., people can describe their behavior 

and associated thought processes), and more computationally costly (Daw et al., 2011; Daw 

& O’Doherty, 2014). 

The concept of habit has, of course, been discussed for a long time in many 

disciplines, including economics, sociological anthropology (“rituals”), and individual and 

organizational psychology (“routines”).8 The Nobel laureate economist Gary Becker 

(Becker, 1996, p.9) wrote “I believe the main reason habitual behavior permeates most 

aspects of life is that habits have an advantage in the biological evolution of human traits.” 

Here, we do not formally address the normative question of what a habit-based system 

 
6 “Dual system” neuroeconomic models have been proposed before. The closest in spirit to ours is 
Benhabib & Bisin's (2005) model of automatic and controlled interaction in savings decisions (and 
mention predictions about neural activity and response time). However, there is no dynamic concept 
akin to habit in their approach. 
7 In cognitive neuroscience, the “model-based” terminology is meant to distinguish this decision mode 
from simple reinforcement learning of the value of a state or action through direct reinforcement (which 
is perhaps confusingly called “model-free learning”). Here, the model-based mode can be understood to 
include models like expected utility maximization, where the association between states and outcomes 
are learned via Bayes Rule. 
8 See sociological discussions about norms and organizational “routines” (Nelson & Winter, 1982; 
Biggart & Beamish, 2003; Hodgson & Knudsen, 2004). Routines are company-level habits. 
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should look like.9 Rather, our goal is to describe the behavioral predictions that result from 

the existence of these two decision-making modes (each of which have their own 

supporting empirical evidence in the human brain) and transitions between them. To this 

end, we make predictions about how consumers respond to incentives and disincentives as 

captured by a basic economic measure – price elasticity of demand.10 

 

a. Neuroscientific background 

 

The distinction between habit and model-based decision-making modes, as we refer 

to them, first gained precision in animal learning, then quickly became evident in a variety 

of neuroscientific studies.11 This section will first sketch precursors to habit in biology, 

then present our definition of habit.  

Automatic behaviors are ubiquitous in nature. Most animals have reflexes that are 

highly automated and do not require conscious thought. Lorenz (1935) showed that 

newborn ducklings will immediately bond with and follow around their mother as soon as 

they can walk— and if the mother is absent they will follow around a human (a 

phenomenon called “imprinting”). Animals exhibit fixed action patterns when confronted 

with an “innate releasing mechanism” in response to an evolutionarily-important stimulus 

(e.g., mating dances by birds; Tinbergen, 1951).  Later scientific study, in simple domains 

such as rodents running through mazes for food, showed how chained sequences of actions 

become rapid and automatic. Neural activity is observably reorganized as sequences are 

learned (Graybiel, 1998; Smith & Graybiel, 2016; Smith & Graybiel, 2014) . 

An important difference between reflexes and habits is that reflexes are typically 

difficult to control or override. Regular breathing is a reflex; babies are born doing it.  The 

magician David Blaine trained himself to hold his breath for several minutes, and free 

 
9 However our conceptualization of habit is based on its potential efficiencies compared to a model-
based choice (at least in some stable environments). For a model of habits as optimal responses to 
information processing frictions, see Matyskova, Rogers, Steiner & Sun, 2020.  
10 See Camerer et al (2021) and Xin et al (2021) for ongoing applications to consumer choice and social 
media use. 
11 Psychological ideas and measures of habits proceeded in a parallel track but have not been closely 
linked to biological mechanisms (Wood & Rünger, 2016). 
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divers (including some individuals from cultures with long traditions of underwater 

fishing) can too. But that type of override only occurs with long periods of training. Habits, 

in contrast, can be inhibited more easily.  

The first step in our approach is forming a precise definition of habit, with empirical 

content. Adams & Dickinson (1981) defined a habit as a behavior that is so “overlearned” 

that it is repeated even when rewards are devalued. For example, Adams & Dickinson 

(1981) conducted a seminal study in which rats were trained to press a lever for sucrose 

pellets in ten training sessions, over 500 rewarding trials. Lever-pressing becomes rapid 

and automatic. After this training, the sucrose is paired with lithium chloride and the rats 

are allowed to eat as much sucrose as they want. This pairing makes the rats mildly ill and 

creates a taste-aversion so that they dislike the sucrose pellets. The sucrose has been 

“devalued.” (Other methods of devaluation are to allow rats and humans to eat or drink to 

satiety, at which point the marginal value of additional reward is thought to be zero.)  

After devaluation, the rats are allowed to lever-press again (with no reward 

presented). Rats press about 4.4 times per minute after sucrose was devalued, similar to 

3.7 times per minute for control rats (for which there was no devaluation). Five hundred 

trials of training apparently built up a habit to press the lever, even when pressing does not 

achieve a desirable goal. In a group with less training (100 trials) rats in the devalued 

condition did press less often, only 1.7 times per minute, than control rats. Numerous 

replications of this classic result can be found in neuroscience and psychology, particularly 

for animals (Dickinson, 1985; Dezfouli & Balleine, 2012). However, the effect of over-

training is more nuanced in humans (perhaps related to stress), even when a majority of 

subjects exhibit insensitivity to reward devaluations (i.e. habitization) (de Wit et al., 2018; 

Pool et al., 2021).  

In microeconomic terms, the rats are persistently “demanding” food at the same 

rate, even after its quality has changed. This is naturally described as a zero quality-

elasticity (an elasticity is the percentage change in demand relative to the percentage 

change in another variable, such as price or income). While price does not change in the 

animal experiments, it is a small leap to expect that a habit characterized by zero quality-
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inelasticity will also exhibit zero price-elasticity.12 From a neuroeconomic perspective, a 

habit can therefore be defined by a repetitive choice pattern with perfectly inelastic 

demand. This neuroeconomic definition links the psychological concept of habit from 

animal learning with a behavioral measure from economics that specifies how a habit may 

be identified in economic data.  

A related stream of research establishes a basic distinction between habit and “goal-

directed” control – the latter idea mapping to our notion of model-based decision-making – 

and explored their neural mechanisms (Dickinson, 1985; Dickinson & Balleine, 1993; Yin & 

Knowlton, 2006). Some studies even seem to pinpoint the brain regions used to execute 

habits. If a habit is short-circuited, animals should cease to respond when reinforcers are 

devalued (i.e., they will not respond for worthless rewards, as in the experiments just 

described). Indeed, causally extinguishing activity in the dorsolateral striatum with 

neurotoxins erases habit in rats (Yin, Knowlton, & Balleine, 2004; Kyle Stephen Smith & 

Graybiel, 2014, Fig.1). The homologous area of the dorsolateral striatum in humans is also 

activated by fMRI when people execute habits (Tricomi, Balleine, & O’Doherty, 2009; 

Wesley et al., 2014).13   

 As Gary Becker’s quote anticipated, a mixture of habit and model-based choice is an 

ideal way for healthy, busy, humans to behave.  In developed economies, people make 

many choices every day, and only have a scarce amount of cognitive control (or “executive 

function”). Habits allow the brain to operate on “autopilot” and conserve mental resources 

(see Duhigg, 2012, for a good popular account). While habitual choices can be optimal if the 

subjective values of available goods are not changing too much, habits can overlook 

 
12 Note that from the functional point of view, it is perhaps no surprise that habit creates temporary 
insensitivity to devaluation. The cognitive economic advantage of habit is to reduce expenditure of 
scarce mental resources on regular, reliably-rewarding behaviors. The strength and automaticity of 
habit will naturally tend to lead to persistence of a habitual behavior when it is no longer rewarding. 
13 A high level of activity in this area during choices for drugs (compared to activity in control subjects), 
in concert with reduced dorsolateral pre-frontal activity, is linked to addictive behavior in humans. As 
Wesley et al. (2014) describe: “the evolutionarily young executive system [pre-frontal] … works in 
concert with the older limbic system [striatum] for optimal decision-making. When these systems are 
functioning sub-optimally decision-making becomes impaired.” Note, however, that we are focusing on a 
model of healthy individuals, making relatively mundane, regular choices. See Section IId for further 
discussion of addiction. 
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opportunities to switch to choices that have become more rewarding.14 

 The key feature of a well-functioning habit is a mechanism for turning habits on and 

off. An approach from theoretical neuroscience proposes that the brain keeps track of the 

reliability of rewards from the individual’s choices and uses these reliability measures to 

activate and deactivate a habit (so that both computations are being made in parallel; Daw, 

Niv, & Dayan, 2005; Keramati, Dezfouli, & Piray, 2011). Ideally, this arbitration should 

break habits when they become mistakes, and should hand control back to the habit system 

when choice values stabilize (i.e., reward reliability is high). Lee, Shimojo, & O’Doherty 

(2014) provide the first fMRI evidence of this process. They identified activity in lateral 

prefrontal cortex and frontal pole encoding reliability signals for both habitual and non-

habitual choices. Furthermore, they find that the persistence of a habit is best explained by 

a reward prediction reliability measure formed from the absolute values of accumulated 

reward prediction errors. Notably, this suggests that a habit may be turned off by both 

good and bad surprises about the value of a habitually chosen option. 

 

b. The neural autopilot model 

 

 Here we present a simple theoretical model that formalizes our neuroeconomic 

concept of a habit (and nests a standard utility-maximization model as a special case). A 

key feature of our model is how control over behavior is transferred from one decision-

making mode to the other, what computations are made in each mode, and the choice 

predictions that result. We call the theory “neural autopilot” because it resembles a control 

system – such as flying an airplane – that automates some behaviors, freeing up the scarce 

cognitive resources of pilots to monitor and control non-automated activity of the plane. 

 
14 This same principle leads to what are called “action slips,” in which a habit is executed without 
minimal cognitive resources, such as a tired professor putting ground coffee directly into a glass, rather 
than a coffee machine. Action slips also can take place in unfamiliar environments in which trigger cues 
or design has changed, even slightly. For example, author Camerer’s household now has two SUVs. One 
has an old-fashioned physical key ignition system and the newer one has an electronic key fob so 
pressing a button starts the car.  He often mixes up the two, pressing the keyholder in the older car to 
start it. 
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Such well-functioning systems have sensors that alert the pilot when an automated system 

might need to be disabled and overridden by human control.  

Formally, a consumer faces a repeated choice between two options, 𝐴 and 𝐵, at each 

period 𝑡 = 0,1,…. We let 𝑐𝑡 denote the consumer’s choice (either 𝐴 or 𝐵) at 𝑡 and 𝑢𝑡(𝑥) 

denote the net subjective value or utility from choosing 𝑥 at 𝑡. Following suggestions and 

evidence from neuroscience, the consumer forms reward predictions regarding the value of 

each option and updates these predictions based on values realized from the consumer’s 

choices. Specifically, the reward prediction for 𝑥 at time 𝑡, denoted 𝑟𝑡(𝑥), is modeled as a 

time-weighted average of past utilities from choosing 𝑥 according to: 

 

𝑟𝑡(𝑥) = {
(1 − 𝜆𝑟)𝑟𝑡−1(𝑥) + 𝜆𝑟𝑢𝑡−1(𝑥), 𝑐𝑡−1 = 𝑥,

𝑟𝑡−1(𝑥), 𝑐𝑡−1 ≠ 𝑥,
 

where 𝜆𝑟 is a constant learning rate (between 0 and 1) that reflects the degree to which 

reward predictions adjust to new information; if 𝜆𝑟 = 1, reward predictions fully update to 

reflect the value realized from choosing the option in the previous period, but if 𝜆𝑟 is low, 

reward predictions update more gradually. Of note, the updating rule for 𝑟𝑡(𝑥) after 𝑥 is 

chosen (i.e. when 𝑐𝑡−1 = 𝑥) can be re-written as 𝑟𝑡(𝑥) = 𝑟𝑡−1(𝑥) + 𝜆𝑟(𝑢𝑡−1(𝑥)− 𝑟𝑡−1(𝑥)), in 

which case the new reward prediction is expressed as the previous reward prediction plus 

a term that represents a reward prediction error (RPE), i.e. 𝑢𝑡−1(𝑥)− 𝑟𝑡−1(𝑥), scaled by the 

learning rate 𝜆𝑟 . If 𝑥 was not chosen (𝑐𝑡−1 ≠ 𝑥), there is no new information about its value, 

so the associated reward prediction does not change. 

 Besides forming predictions regarding the value of each option, we assume that the 

consumer also tracks the reliability of these predictions. We let 𝑑𝑡(𝑥) denote the “doubt 

stock” for option 𝑥 at time 𝑡. A low value of 𝑑𝑡(𝑥) means the consumer implicitly “trusts” 

(i.e. has little doubt in) the current prediction 𝑟𝑡(𝑥). Doubt is low if past reward predictions 

have been good predictors of past utilities; doubt is high if past reward predictions were far 

off. Formally, and motivated by previously discussed findings from neuroscience, the doubt 

stock updates based on the absolute values of RPEs, |𝑢𝑡(𝑥) − 𝑟𝑡(𝑥)|, as follows: 

𝑑𝑡(𝑥) = {
(1 − 𝜆𝑑)𝑑𝑡−1(𝑥) + |𝑢𝑡(𝑥) − 𝑟𝑡(𝑥)|,         𝑐𝑡−1 = 𝑥,

(1 − 𝜆𝑑)𝑑𝑡−1(𝑥) +          𝑐𝑡−1 ≠ 𝑥,
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where 𝜆𝑑  is a constant learning rate between 0 and 1 that is similar to 𝜆𝑟 except it applies 

to the evolution of the doubt stock as opposed to the reward predictions. For simplicity, we 

assume 𝜆𝑟 = 𝜆𝑑 = 𝜆 going forward, though empirically 𝜆𝑑  and 𝜆𝑟 could be different.  

Our rule for updating the doubt stock indicates that if 𝑥 was chosen at 𝑡 − 1, the 

doubt stock at 𝑡 will be updated based on the absolute RPE, |𝑢𝑡(𝑥) − 𝑟𝑡(𝑥)|. If 𝑢𝑡(𝑥) does 

not change as 𝑥 is repeatedly chosen, then the absolute RPE will approach zero, causing the 

doubt stock to approach zero, but if 𝑢(𝑥) suddenly changes by a large amount, a large RPE 

will cause a jump in the doubt stock. If 𝑥 is not chosen at 𝑡 − 1, however, its updated doubt 

stock is 𝑑𝑡(𝑥) = (1 − 𝜆)𝑑𝑡−1(𝑥) + 𝛼; here, the addition of the constant 𝛼 > 0 reflects a rise 

in doubt because the reward prediction for 𝑥 was not actually “tested” against its true 

utility. Going forward, we normalize 𝛼 = 1. If 𝑥 is repeatedly not chosen, its doubt stock 

will converge to 𝜆−1. We therefore set 𝑑0(𝑥) = 𝜆−1 for 𝑥 = 𝐴, 𝐵, which ensures the initial 

doubt for a given option will be constant as long as that option is never chosen. 

While the impact of the RPE on doubt could, in principle, be stronger or weaker 

depending on whether the RPE is positive or negative, in our model positive and negative 

RPEs are weighted equally. This assumption may in part be understood as a simplification 

for analytical convenience. With that said, it also operationalizes previously discussed 

evidence from neuroscience that absolute values of RPEs may be used to form reliability 

estimates that govern the use of habit. 

We now define our two decision-making modes. In habit-based decision-making, the 

consumer simply repeats her previous choice: 

𝑐𝑡 = 𝑐𝑡−1. 

By contrast, in model-based decision-making the consumer considers both options and 

chooses the option that maximizes present utility: 

𝑐𝑡 = {
𝐴, 𝑢𝑡(𝐴) > 𝑢𝑡(𝐵),

𝐵, 𝑢𝑡(𝐴) < 𝑢𝑡(𝐵).
 

Here, we assume the consumer considers both options and uses all utility-relevant 

information in a given period to inform their choice; in this way, our formulation of model-

based decision-making corresponds to a standard microeconomic approach.  

At this point, one may wonder why a consumer would bother forming a reward 

prediction 𝑟𝑡 if the consumer can just observe 𝑢𝑡. First, reward predictions are still useful in 
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other environments where it would not be possible to know 𝑢𝑡 in advance of a choice. 

Recall from our earlier discussion, reward predictions are used in reinforcement learning 

models that provide a simple algorithmic solution to such problems (e.g. multi-armed 

bandits) and that their neurobiological markers form the basic reward learning circuitry in 

the brains of vertebrates. Even in environments where it is possible to observe utility 

relevant information, it has been demonstrated that reward predictions are still computed 

in the brain even if they are ultimately ignored (Lee, Shimojo, O’Doherty, 2014). Moreover, 

our model may be understood to include a fixed cognitive cost that is paid in each period 

that the consumer uses model-based decision-making. The existence of a habit system is 

premised on the inefficiency of using model-based decision-making in all choice 

environments. But the decision-maker then needs a mechanism to arbitrate between 

modes. As we will soon see, reward predictions are a key component of this mechanism. 

 To close the model, habit-based decision-making is used if and only if the doubt 

stock associated with the previously-chosen option is below some threshold 𝜃 with 0 <

𝜃 < 𝜆−1. This leads to the following choice rule: 

𝑐𝑡 = {
𝑐𝑡−1, 𝑑𝑡(𝑐𝑡−1) < 𝜃,

arg max𝑥∈{𝐴,𝐵} 𝑢𝑡(𝑥) , 𝑑𝑡(𝑐𝑡−1) ≥ 𝜃. 

If 𝜃 = 0, the consumer always uses model-based decision-making. In this way, our 

model nests a standard utility-maximization model as a special case. Even with 𝜃 > 0, the 

consumer necessarily uses model-based decision-making at 𝑡 = 0, choosing the option 

among 𝐴 and 𝐵 with higher utility – here, the use of model-based decision-making is 

assured since 𝑑0(𝐴) = 𝑑0(𝐵) = 𝜆−1 > 𝜃. 

If 𝑢0(𝐴) > 𝑢0(𝐵), in which case the consumer’s first choice will be 𝑐0 = 𝐴, and 

utilities do not change, the consumer will continue to choose 𝐴 while the doubt stock 𝑑𝑡(𝐴) 

decreases over time. Once 𝑑𝑡(𝐴) falls below 𝜃, habit mode takes over and the consumer 

continues to choose good 𝐴 without even considering good B (hence the concept of 

autopilot). Meanwhile, habit mode will control choice until it is interrupted by a series of 

sufficiently large RPEs, caused by changes in 𝐴’s utility, pushing 𝑑𝑡(𝐴) above 𝜃. Recalling 

that the doubt stock is driven by absolute RPEs, we can see that both “good” (𝑢𝑡(𝐴) >

𝑟𝑡(𝐴)) and “bad” (𝑢𝑡(𝐴) < 𝑟𝑡(𝐴)) surprises can jolt the consumer out of habit mode, 
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prompting model-based consideration of both options. Thus, even if good 𝐴’s price or 

quality improves, this could lead the consumer to abandon the habit and choose 𝐵.15 

Stepping back, we can now see how the model clarifies the reduced-form 

economizing value of habit. A computationally cheap process that determines the decision-

making mode first perceives an environmental state (including cues which may be 

associated in memory with previous choices in that state16), recalls the previous choice 

𝑐𝑡−1, and checks if the doubt stock 𝑑𝑡(𝑐𝑡−1) associated with this previous choice is less than 

𝜃. If the answer is “Yes” the previous choice is executed out of “habit.” Here, a habituated 

person does not even need to gather information or recall the utility of what they are buying. 

In terms of neural activity, we would expect to find neural signals associated with memory 

of choices and with value uncertainty (i.e. “doubt”) in habit mode. There are likely to be 

weaker signals associated with reward prediction and with subjective value. 

 

c. Habit and price elasticities 

 

Next we show two interesting implications of our habit model for price elasticities (defined as 

the percentage change in quantity demanded divided by the percentage change in price). 

Price elasticities are represented as unitless numbers, allowing them to be compared 

across different types of goods. Elasticities are workhorse measures in economics, used to 

 
15 Here is a motivating example of how a positive RPE might shift people out of habit mode. Suppose a 
family goes to the same Chinese restaurant every Sunday and orders their same, favorite dishes. One 
Sunday two of the dishes are unusually good. Intuitively, even though the dishes taste better, positive 
prediction error increases doubt stock (perhaps triggers in an inference that there is a new chef) and 
could lead to deliberate evaluation of other dishes they did not like in the past. In other words, the 
positive surprise provides information that the decision-making environment might have changed (i.e. 
the distribution of rewards in an environment are not entirely independent). Our conjecture is that the 
human decision-making system may have evolved under such conditions (e.g. societal and climatic). 

16 Situational cues have been shown to be important in biological addictions, such as opiods. 
The theory is that homeostatic processes designed to maintain stability in physical states 
respond to Pavlovian cues which predict immediate drug use in a "feed-forward" process. 
Siegel et al (1982) showed that rodents exposed to a series of increasingly-large heroin doses 
were twice as likely to do from a large novel dose when the dose was administered in an 
unfamiliar environment. Laibson (2001) explores some formal implications of a model with  
cue-dependence. Wellsjo (2021) shows that unfamiliar situational cues (e.g., working in a 
different part of a hospital) affect habitual use of handwashing mchines. 
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define monopolization (low elasticity) and competition (high product-specific elasticity), to 

define substitute and complementary goods (cross-price elasticities that are positive and 

negative, respectively), and to quantify the impacts of policy changes such as increases in 

gasoline taxes.  

 

An ongoing challenge for neuroeconomics is whether understanding basic neural 

computational processes – and constructing models about those processes (at Marr’s 

algorithmic level) – can say something novel about core economic questions. We developed 

the autopilot model specifically to say something about a very basic economic construct: 

price elasticity. As addressed earlier, there is a simple link between neuroscience and 

elasticity, through our concept of habit. As we recall, Adams & Dickinson (1981) conceive 

habit as insensitivity to devaluation of outcomes, which naturally maps to demand 

characterized by zero price (or quality) elasticity.  

Next, we explore our model’s implications for price elasticities in a stylized 

consumer market, focusing on the anomalous responses to price changes among 

consumers who have already formed habits. We assume the market is comprised of a unit 

mass of consumers with symmetrically heterogeneous preferences in that, with equal 

(initial) prices for 𝐴 and 𝐵, i.e. 𝑝(𝐴) = 𝑝(𝐵) = 𝑝̅, the utility difference 𝑢(𝐴) − 𝑢(𝐵) is 

presumed to be uniformly distributed between −1 and +1 across all consumers. 

Next, we consider the effect of a change in the prices of 𝐴 and 𝐵 by Δ𝐴 and Δ𝐵, 

respectively (so that Δ𝑥 > 0 means 𝑥 has become more expensive while Δ𝑥 < 0 means 𝑥 

has become less expensive). Letting Q𝐴(Δ𝐴, Δ𝐵) represent the quantity demanded for 𝐴 in 

the period when these price changes first occur, the own-price elasticity for 𝐴 quantifies the 

effect of the price change Δ𝐴 on the demand for 𝐴 and is given by: 

𝜂𝐴(Δ𝐴|Δ𝐵) =
[Q𝐴(Δ𝐴,Δ𝐵)−Q𝐴(0,Δ𝐵)]/Q𝐴(0,Δ𝐵)

Δ𝐴/𝑝̅
. 

The cross-price elasticity quantifies the effect of 𝐵’s price change, Δ𝐵, on the demand for 𝐴: 

𝜂𝐶
𝐴(Δ𝐵|Δ𝐴) =

[Q𝐴(Δ𝐴,Δ𝐵)−Q𝐴(Δ𝐴,0)]/Q𝐴(Δ𝐴,0)

Δ𝐵/𝑝̅
. 

From here on, the arguments (Δ𝐴 and Δ𝐵) in 𝜂𝐴 = 𝜂𝐴(Δ𝐴|Δ𝐵) and 𝜂𝐶
𝐴 = 𝜂𝐶

𝐴(Δ𝐵|Δ𝐴) will often 

be suppressed for ease of exposition. 
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There are four qualitatively distinct ways in which demand in a market with 

habituated consumers can depend on price changes, each of which represents a different-

colored region in the following graph: 

 

 

Figure 1: Changes in demand for 𝐴 as a function of price changes of 𝐴 and 𝐵 in a market of 

consumers with pre-established habits (half for 𝐴, half for 𝐵). 

 

The green area in Figure 1 represents a “normal” region in which price changes 

induce the same “standard” effects on demand for each good as for consumers in the 

model-based decision-making mode. Here, consumers’ aggregate behavior satisfies the 

“Law of Demand” in that demand for 𝐴 falls as its price increases (Δ𝐴 > 0) and rises as its 

price decreases (Δ𝐴 < 0), as captured by a negative own-price elasticity, 𝜂𝐴 < 0. 

Furthermore, demand for 𝐴 rises with an increase in the price of its substitute 𝐵 (Δ𝐵 > 0) 

and falls with a decrease in the price of 𝐵 (Δ𝐵 < 0), as captured by a positive cross-price 

elasticity, 𝜂𝐶
𝐴 > 0 (the converse also holds: 𝜂𝐶

𝐵 > 0). 

The three remaining regions highlight ways in which habituated consumers may 

exhibit nonstandard responses to price changes, as predicted by our model. 

 

Zone of Price Indifference (Gray). Within the gray region, the price changes Δ𝐴 and Δ𝐵 

have no effect on demand; that is, price-elasticities are zero: 𝜂𝐴 = 𝜂𝐶
𝐴 = 0. This so-called 
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“zone of price indifference” (ZPI) exists because price changes within the zone are either 

not large enough (in magnitude) to jolt consumers out of habit mode, or because a price 

change is sufficiently favorable to preclude switching to the other option even when both 

options are considered. For example, a huge price decrease for 𝐴 can prompt consumers 

habituated to 𝐴 to consider both options, but since 𝐴 is even more appealing in relation to 

𝐵 at their new prices in this region, those who have been consistently choosing 𝐴 will 

continue to do so – except now based on a higher valuation of 𝐴 rather than a habit. 

 

In line with this prediction, many marketing studies have documented near-zero price 

elasticities in a measured ZPI surrounding a reference price.17 Estimates of the size of the 

ZPI are about 10% of the current price (Han, Gupta, & Lehmann, 2001). They cluster all 

consumers into two segments based on several observables. The two segments appear to 

correspond to more price-sensitive and more habitual shoppers.18 

 

Law of Demand Violated (purple). According to our model, the Law of Demand can be 

violated under the right conditions among consumers with pre-established habits. Namely, 

within the purple region of Figure 1, 𝜂𝐴 > 0, as a decrease in the price of 𝐴 paradoxically 

leads to a decrease in demand. In this region, a decrease in the price of 𝐴 is sufficiently 

large to induce a shift to model-based decision-making, but insufficiently large to 

compensate for the even larger price decrease for 𝐵, leading some consumers to switch 

from 𝐴 to 𝐵. If 𝐴 had maintained its original price, however, these consumers would not 

have noticed 𝐵’s reduced price and would have therefore continued to choose 𝐴 (even 

 
17 The ZPI is also called “latitude of price acceptance” in marketing. For evidence of a ZPI, see Kalwani 
and Yim (1992), Gupta and Cooper, Kalyanaram and Little (1994), Han et al. (2001), and Terui and 
Dahana (2006), among others. 
18 Their algorithm compares fits for two to five clusters and picks out two as the best-fitting (meaning 
additional clusters did not change overall fit much). Other studies have found two or three segments 
(Bucklin & Gupta, 1992). This is consistent with a two choice-mode simplification. While not addressed 
by our analysis of a one-time price change, there is also mixed evidence that indifference thresholds 
increase when prices are more volatile, consistent with “hysteresis” stemming from the option value of 
waiting for a better deal when prices are variable (Richards, Gómez, & Printezis, 2015).  
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though 𝐵 now represents a better deal). Notice that this violation of the Law of Demand 

arises even though the options in our model would not be considered “Giffen goods.” 

Such incorrectly-signed own-price elasticity estimates – indicating violations of the 

Law of Demand – are indeed common in the empirical literature (e.g. as discussed by 

Montgomery & Rossi, 1999). However, such estimates are generally not accepted at face 

value because they are thought to lack a viable theoretical foundation (also see Cramer, 

1973; Song & Chintagunta, 2006). In this light, our model offers a potential theoretical 

rationale for this phenomenon. 

 

Oppositely-Signed Cross-Price Elasticities (orange). Standard economic treatments 

suggest that the relationship between the price of 𝐵 and demand for 𝐴 should be 

qualitatively the same as the relationship between the price of 𝐴 and demand for 𝐵. 

Namely, when 𝐴 and 𝐵 are substitutes (as in our model), a price change for one good 

should shift demand for the other good in the same direction. For instance, if the price of 

Coke goes up, demand for Coke goes down (the own-price elasticity is negative) while 

demand for Pepsi goes up (the cross-price elasticity of the substitute good is positive). 

While in principle cross-price elasticities 𝜂𝐶
𝐴  and 𝜂𝐶

𝐵  should both be positive for 

substitutes, within the orange region of Figure 1 the cross-price elasticities have opposite 

signs, 𝜂𝐶
𝐴 < 0 < 𝜂𝐶

𝐵 , as the price decreases Δ𝐴 < 0 and Δ𝐵 < 0 both shift demand towards 𝐴 

and away from 𝐵. The reason 𝐵’s price cut shifts demand towards 𝐴 in this case follows 

from the fact that the Law of Demand for 𝐵 is violated within this region (not to be 

confused with the purple region, where the law is violated for 𝐴), leading to the peculiar 

effect on demand for 𝐴. As noted in a review by Bonfrer, Berndt, & Silk (2006), empirical 

studies frequently find that estimated cross-price elasticities in pairs of goods have 

opposite signs.  There is no consensus about how asymmetries should be interpreted, or 

whether they reflect measurement error. The autopilot theory gives one possible 

explanation.19 

 
19 In a meta-analysis of 15 studies on grocery purchases, Sethuraman, Srinivasan, & Kim (1999) report 
that about 10% of 1,060 cross-price elasticity estimates are incorrectly signed. The authors suggest 
these incorrectly-signed elasticities were probably due to measurement error. We believe this 
explanation is probably correct in many cases, but it is also possible that anomalous findings such as 
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Asymmetric Responses to Gains and Losses. The model can also generate a gain-loss 

asymmetry in that demand is more responsive to increases in the price of good 𝐴 than it is 

to equal-sized price decreases. This prediction is most apparent when 𝐴’s price change is 

sufficiently large to escape the ZPI for a price increase Δ𝐴 > 0 but |Δ𝐵| is small enough to 

keep consumers in the ZPI for a price decrease −Δ𝐴 < 0 of equal magnitude. The intuition 

is that both an increase or a decrease in 𝐴’s price create RPEs that are equal in absolute 

value. Both changes will push the doubt stock 𝑑𝑡(𝐴) above the threshold 𝜃, triggering 

model-based decision-making – but only among consumers who were habituated to 𝐴. 

While the price increase will shift demand away from 𝐴 (among consumers previously 

habituated to 𝐴), a price decrease would not draw a similar share from consumers 

habituated to 𝐵 if |Δ𝐵| was too small to induce these consumers to consider 𝐴 at its new 

price. 

 Such asymmetry in consumers’ responses to price changes was documented in 

Putler's (1992) empirical analysis of the demand for eggs. He estimated elasticities for 

price increases and decreases to be -.78 and -.31, respectively, while many other studies 

have confirmed this asymmetry (e.g. Mayhew & Winer, 1992; Hardie, Johnson, & Fader, 

1993; Kalyanaram & Winer, 1995; Han et al., 2001). The standard behavioral explanation is 

that loss aversion from paying a price higher than a reference price causes this asymmetry. 

This explanation is certainly plausible (and is consistent with other evidence of loss 

aversion in consumer behavior e.g. Ahrens, Pirschel, & Snower, 2017). However, our 

autopilot model can generate the same theoretical result without loss-aversion. 

Furthermore, our model makes a new empirical prediction: that asymmetric responses to 

price changes will only be seen for large enough price changes in one product while any 

price changes for substitute products are small. If both changes are large enough, there will 

be no gain-loss asymmetry as Putler and others found.  

 

d. Comparison with economic approaches 

 
these are too quickly dismissed because there is no theory about why signs would be wrong. We offer 
such a theory. 



 20 

 

 In economics, the standard way to model habits is by assuming that past and 

present consumption are complements in the sense that past consumption of a good 

strengthens a consumer’s current preference for that good (e.g. Pollak, 1970; Ryder & Heal, 

1973; Becker & Murphy, 1988; Crawford, 2010). Such “preference complementarity” is 

typically formalized through utilities that depend on past choices; in the present 

framework, this could involve allowing 𝑢𝑡(𝐴) and 𝑢𝑡(𝐵) to depend on 𝑐𝑡−1 while assuming 

that the difference 𝑢𝑡(𝐴) − 𝑢𝑡(𝐵) is larger (all else equal) if 𝑐𝑡−1 = 𝐴 than if 𝑐𝑡−1 = 𝐵. While 

this approach captures a basic notion of choice persistence in habits, it does not tell us 

much about habits at the mechanistic, algorithmic, or even functional levels. 

The preference complementarity approach has famously been used by Becker and 

Murphy (1988) to model the consumption of addictive goods, such as cigarettes. While 

there are several interesting parallels, our neural autopilot model is not tailored for the 

analysis of biologically addictive behavior. Our consideration of a regularly occurring 

choice between two options is instead more suited to study habits in consumers’ repeated 

brand choices, such as a choice between two brands of cereal during a weekly visit to a 

grocery store.  

By contrast, the frequency with which an individual considers consuming an 

addictive good likely varies substantially depending on the individual’s addiction status. A  

full-fledged cigarette addict may contemplate smoking dozens of times a day yet 25 years 

after quitting this ex-addict may not even think about smoking on a typical day. 

Furthermore, in the context of addiction the decision of interest is generally whether or not 

to consume a particular good, as opposed to a choice between two versions (or brands) of 

the same good. As demonstrated in Landry (2019), a model of addiction based on such 

“endogenous consideration” can account for many empirical regularities that are not 

addressed by models of addiction based on preference complementarity. 

The preference complementarity approach is closely related to representations of 

“state-dependence” (e.g. Keane, 1997; Dubé, Hitsch, & Rossi, 2010) – in which preferences 

for a good are affected by the previous purchase history (summarized as a “state” variable) 
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– for modeling consumer “inertia” or “brand loyalty” in brand choice.20 Indeed, consumer 

purchase data usually show strong patterns of brand loyalty. While consumers in our 

model will exhibit a form of brand loyalty driven by a lack of consideration for other 

options while in habit mode, brand loyalty is not built in as a primitive. That is, there is no 

direct change in subjective value or choice frequency based on purchase history.   

A particularly interesting study is Bronnenberg, Dubé, & Gentzkow (2012). They 

studied US consumers’ purchases after moving to a new state. They find substantial 

persistence in the brands consumers buy: In the first four years after moving, consumers 

respond to just 60% of the new supply conditions they face (implying a 40% habit 

‘strength’). The implied habit strength is weaker for people who moved when they were 

younger.21 Consistent with this finding, brand loyalty is generally shown to be stronger 

among older consumers (Lambert-Pandraud & Laurent, 2010). 

 The role of the threshold 𝜃 in our approach is similar to threshold approaches used 

in other areas of economics, where there is behavioral stickiness or rigidity absent a 

sufficiently large change in market conditions (Slade, 1999; Caballero & Engel, 1999; 

Cecchetti, 1986). Rigidity in this context is usually ascribed to frictions or “menu costs.” Our 

approach is also related to macroeconomic work on “inattentive consumers.” For example, 

Reis (2006) derives how frequently consumers re-evaluate their consumption plans when 

planning is costly. Consumption during periods of inattention is similar to habit, but 

decisions to plan are carefully computed by optimization. In contrast, we have opted to 

make the habit mode as “dumb” and automatic as possible.  

Of course, there is plenty of empirical evidence of choices that seem habitual, in the 

sense that people persist in a regular choice even when it does not accomplish their desired 

 
20 Inertia and brand loyalty are also often conceived in terms of psychological “switching costs” (e.g. 
Farrell & Klemper, 2007). Switching costs could also result from learning-by-doing; for example, driving 
an automatic transmission long enough makes it difficult to switch to a manual stick shift. In these cases 
the increase in utility of a habitual action would naturally be interpreted as a reduction in effort cost. In 
a somewhat related approach – that perhaps more closely resembles the idea of a “hedonic treadmill” – 
in macro-finance “habit formation” preferences take the difference between a household’s aggregate 
current consumption level and a weighted average of previous consumption (Abel, 1990; 
Constantinides, 1990; Boldrin, Christiano, & Fisher, 2001; Campbell & Cochrane, 1999). 

21 There is similar persistence in Indian immigrant preferences for foods from their birth regions (Atkin, 
2013) and in European immigrant preferences for redistribution based on norms in their birth country 
(Luttmer & Singhal, 2011).  



 22 

goal, or when it leads to a regretted mistake. For example, studies of people driving in 

simulators for many hours (Charlton & Starkey, 2011) demonstrate that highly-practiced 

drivers become inattentive. And in actual driving, near-crashes and crashes are often 

associated with inattention (NHTSA, 2006).  

Defining habit purely in terms of preference complementarity has certainly been 

useful for some specific purposes. In our view, however, there are three limits to this 

approach that our neural autopilot model is intended to extend. First, the preference 

complementarity approach gives no guidance about what variables cause habitual choice to 

end. Our approach emphasizes the general two-controller model of choice and substitutes 

persistence of choice (during habit) for persistence of consumption driven by utility. This 

shift also invites consideration of questions like, “given environmental stationarity and 

action costs, what is the ideal mixture of habit and model-based decision-making?” This 

question does not make sense if habit is driven by preferences. 

Second, if current consumption utility is increasing in past consumption, then 

reward signals associated with consumption should get larger and larger as the same good 

is chosen repeatedly (assuming utility generates reward signals). We know of no such 

evidence that persistent consumption increases reward signals (outside of a learning 

process), despite many, many studies on the learning of reward, ranging from direct 

measures of neural firing in monkeys to human fMRI.22 This idea of increased reward 

(similar to “sensitization” in psychophysics) is not too biologically plausible as a general 

principle.  

 Third, a combination of evidence and intuition suggest that the development of 

habit can be identified empirically by multiple behavioral and cognitive markers (see Table 

1). This is a large empirical advantage of our approach. The preference complementarity 

approach does not say anything about these markers because they do not specify the 

algorithm or mechanism by which habits work.  

 Establishing habit through insensitivity to devaluation (as in the Adams-Dickinson 

rat experiments) has been challenging in humans (Pool et al., 2021). Being able to identify 

 
22 Admittedly the studies that have investigated the effects of persistent consumption have used rewards 

that are more basic (i.e. food or drink) since they are typically run in animals and undergraduate subjects.  
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habit with a variety of measures is one way to work around this challenge; note that many 

of these markers are also part of implicit (or unconscious) processing. While not 

conventional, our view is that studying these empirical markers can enhance economic 

analysis. It is a way to use more data to decide between theories of choice that economists 

routinely use for basic purposes and policy analysis. Doing so does makes economics more 

like a natural science, which we think is good. Additional empirical guidance should be 

welcomed. 

 

Table 1:  Empirical markers of habit vs. model-based choice 

 Habit Model-based 

Own-Price Elasticities positive, negative, or zero negative (has “correct” sign) 

Cross-Price Elasticities positive, negative, or zero positive (for substitutes) 

Choice Speed Fast Slow 

Attention Low High 

Purchase memory Inaccurate Accurate 

Explicit explanation? No Yes 

 

The first two empirical markers, relating to own- and cross-price elasticities, have already 

been discussed. 

Animal and human studies also show that habitual choices tend to be made quickly 

(fast response times). This is a key property because response times are easy to measure. 

If habits aren’t faster they aren’t worthwhile. In addition, we conjecture that less attention 

is used in habit mode. This is uncharted territory, for the most part, because the 

neuroscientific approach to habit came largely from animal learning in a largely behaviorist 

tradition. While attention has not been measured in most of the studies that show 

consumption persistence, indirect evidence indicates that people often do not shop around 

much. For example, in the De los Santos, Hortaçsu, & Wildenbeest (2012) study of internet 

book shopping, 90% of people look at only one site within a day. Even in a seven-day 

window, 76% look at only one site. Marketing studies beginning in the 1970s show single-
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retailer shopping and low information acquisition is common, even for cars and expensive 

appliances (Newman & Staelin, 1972).  

We also expect that people will remember habitual choices less accurately (since 

inattention tends to limit memory creation). An example of this memory effect is checking 

mobile cell phones. In one study people remembered having checked their phones 37.2 

times/day, but the actual measured rate was 84.7 (Andrews, Ellis, Shaw, & Piwek, 2015). 

An anecdotal example of this habit amnesia comes from author Camerer’s partner. She 

often orders online deliveries from Amazon. She was shocked when Amazon sent a 

congratulatory note about how many purchases she had made over several years—1500.  

Remember that in our neural autopilot model, the consumer does not need to keep track of 

the purchase history. 

Note that different behaviors we think of as habitual can vary a lot on these 

psychological dimensions. Going to the gym is likely to be a combination of an explicit 

deliberation, followed by some low-attention choices about what gym clothes to bring, an 

automatic route to a locker room to change clothes, and then to a favorite treadmill.  Ideal 

data from physical sensing as well as real-time self-reports would probably reveal a 

sequence mixing habitual and non-habitual choice, even for a single trip to the gym.  

Finally, in most of cognitive neuroscience habits are thought to be implicit, not 

consciously known (Seger & Spiering, 2011). We conjecture that if you asked someone why 

they made a particular habitual choice, they would find it hard to explain in depth. They 

might answer superficially that “I usually do it this way” and “it’s been good in the past.” In 

a sense, those answers – as vague as they are – are actually a good reflection of cognition 

during habitual choice. “I usually do it this way” refers to the recall of previous choice. “It’s 

been good in the past” is a simple way of saying “the doubt stock was low.” In contrast, a 

model-based choice of, say, a home or a dinner at a new restaurant would probably refer to 

attributes of the choice, prices, the qualities of alternatives, and so on.      

The last two empirical markers of habit– poor memory and explanatory depth – 

may not seem to be important economic variables. But memory and explanation are often 

inputs to other kinds of economic decision making. For example, many household surveys 

rely on memories of purchases. The Consumer Expenditure Survey (CES) uses both 

quarterly surveys and weekly “diary recordings” to measure large and small expenditures. 
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The CES is economically important because it is an input to inflation estimates (CPI). While 

households are encouraged in their diaries to record everything they buy, it is conceivable 

that habitual purchases are underreported. Understanding more about the habit-memory 

link will place boundaries on how common these biases are and help limit them. 

Explanations of reasoning for choices are important too, for educational, 

organizational, legal, and political purposes (Willis & Reyes, 2015). In parent-child, teacher-

apprentice, and manager-trainee relationships, if the more experienced person is making 

habitual choices and cannot explain why, their ability to foster human capital development 

by teaching junior learners is limited. In court proceedings, explanations of why defendants 

took certain actions can have important legal consequences. Thus, while psychological 

markers of habit like decision speed, memory, and explanatory quality are certainly not the 

typical variables of economic interest in studying decision making, we hope to measure 

them and explore how they could be useful.  

We conjecture that there are two other empirical indicators of habit (though we 

have not derived these formally): search costs, and habit interruptions.  

Search (and switching) costs: In habitual choice, by our definition, consumers are 

not searching among a large set of choices which may be varying in price and quality.23 As a 

result, during habitual search the foregone value of search will be high. Any empirical 

analysis which infers the costs of search from actual purchase patterns will therefore infer 

that search costs must be high (to reconcile the low amount of search with optimization).  

Many studies have tested models of optimal search using a combination of prices, 

choices, and search data. In these models there is a hidden “search cost” and consumers are 

assumed to search optimally. A habituated consumer will not search at all; the model will 

therefore identify habit in the form of a high inferred search cost.  

For example, De los Santos, Hortaçsu, & Wildenbeest (2012) estimate the cost of 

searching one extra online bookstore for a bestseller as $4.14, assuming shoppers must 

search to learn prices (p. 2978). Hong & Shum (2006) estimate that half of subjects don’t 

 
23 Turning to search raises the question of how our approach is related to “satisficing” (see the clear 
experimental evidence from (Caplin, Dean, & Martin, 2011). Satisficing is truncation of a search process 
after reaching a utility goal. Habit is shifting from a model-based decision process when repeated choice 
rewards are stable enough. There may be some interesting formal familial relation between the two 
concepts that would be useful to establish.    
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bother to search online for expensive textbooks; they buy at the first price. The estimated 

search costs for those who do search are about $1.30-$19 for the first additional search.  

Moraga-González, Sándor, & Wildenbeest (2013) estimate a search cost of around $8 for 

computer chips. If an extra search is quick, this implies a high marginal search cost per 

hour. Using data on exact shopping cart locations in a store, Seiler & Pinna (2017) estimate 

a return from search of $2.10/minute (or $126/hour).24 De los Santos, Hortaçsu, & 

Wildenbeest (2012) also estimate rather low own-price elasticities for specific bestselling 

books at Amazon (from –.11 to -.65), while controlling for consumer knowledge of shifting 

price distributions. The Amazon elasticities are lower than other bookstores, which is 

consistent with habit if consumers use Amazon more regularly and form a habit.  

It is also typical in these empirical search papers to find bimodality: A large fraction 

of consumers don’t search beyond the first price, while others search more intensively. 

This is consistent with the hypothesis that consumers’ choices can be guided by either of 

two decision-making modes. Of course, it is also likely that there are individual, 

experiential, and lifecycle differences in search intensity, namely income and time 

constraints. But any such theory would have to explain bimodality (e.g. why does the 

distribution of search costs have two modes rather than say a lognormal distribution?).  

Several other economic papers study “inertia” in consumer choice. These papers do 

not fit models of optimal search; instead, they usually compare the costs and value of 

current purchases with opportunity costs from switching. It is possible that inertia is due to 

habit much as we model it, though these studies do not estimate habit explicitly. Luco 

(2019) gets empirical leverage from comparing new and regular customers in Chilean 

pension plan enrollment. He estimates an inertia cost of $37.50/month. Other estimated 

inertia costs seem to be high: $280 (online grocery delivery; Goettler & Clay, 2011), $2500 

(health insurance; Handel, 2013) and $4000 (Medicare; Nosal, 2012). Hortaçsu, 

Madanizadeh, & Puller (2015) estimate it would take Texas households only 15 minutes to 

 
24 Intriguingly, they also find heterogeneity in imputed search costs for different locations in the store. 
This implies that product location is an important aspect to consider in habit formation. Consistent with 
some animal learning studies, even human shopping habits might be specifically constrained in time and 
space, or to particular motor actions.    
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save $100/year on electricity by switching. They also find that having an increase in last 

month’s electricity bill increases search for a new supplier, which is consistent with the 

idea that large reward prediction errors jar people out of habit.  

Habit interruption: An implication of our habit concept is that exogenous 

interruption of habits, typically through product unavailability, can trigger a model-based 

search. This possibility is consistent with evidence that “habit disruption” creates an 

opportunity for behavior change (Carden and Wood, 2018).   

An intriguing analysis of the result of interruption is based on a two-day strike by 

workers in the London subway (Tube) system in February 2014 (Larcom, Rauch, & 

Willems, 2017). This is a good natural experiment because the strike only closed part of the 

Tube routes. Commuters affected by strikes could then be compared with similar 

commuters who were not affected. Oyster swipe cards. which store value and are used by 

many commuters to make cashless transactions,  make it easy to record when and where 

commuters got on and off trains. Furthermore, the London Tube maps are not drawn to 

scale (they were created to look like compact circuit diagrams). As a result, a commuter 

who must get out at a new Tube stop and walk the rest of the way to work cannot judge 

precisely from the map how far they need to walk. They must learn, to some extent, from 

trial-and-error. In terms of our neuroeconomic model, the “inaccuracy” of the map will 

generate larger RPEs in learning for many commuters who break their habits and try out 

alternate routes. 

During the strike, about 63% of commuters could not take their regular route. 

Consider habitual commuters, who had taken the same route for all 10 weekdays before 

the strike. After the strike, 5.4% more of them switched to a new route (compared to 

commuters who hadn’t been affected by the strike and did not switch).25 The switch saved 

an average of 40 seconds of time. Extrapolated over several years of commuting, (Larcom 

et al., 2017) estimated that the subjective search cost required to rationalize the fact that 

these commuters had stuck with a regular commute, but immediately switched because of 

the strike, was £380 ($636 in 2014).  

 
25 Note that creation of a new habit after an interruption is evidence against the common economic 
assumption that habits are a reflection of an increase in utility from making the same choice 
persistently.  
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The strike study raises an interesting question about how technology, regulation, 

and governmental action could enhance welfare with habituated consumers. The authors of 

the Tube study actually suggest that because commuters appear to search too little, the 

interruption due to strike was welfare-enhancing for commuters as a whole. This is a 

dramatic claim because it implies that in general, government actions which specifically 

make products or services unavailable for a short time, forcing search, can help people 

make better decisions by forcing exploration. 

The welfare economics of habits is complicated and we have nothing too deep or 

special to say about it. There might be more efficient regulatory ways to improve consumer 

choice in the face of habit than ad hoc practices like occasional service-worker strikes. 

Regulation could force or subsidize exploration of new products, although competition in 

private markets may do so adequately without government intervention. Some 

technological solutions which enable consumers to search quickly and in a personalized 

way could also interrupt habitual choice and inform those consumers about better 

products.  However, others might reinforce habitual behaviour, like social media and online 

shopping.26 We do not have anything evidence-based to say about this process. 

What happens in a market when firms know that consumers are habitual is an 

interesting question too. Because habitual choice is price-inelastic, by our definition, profit-

maximizing firms have an incentive to retain habituated consumers or to help non-

habituated consumers establish new habits. It is also true that if a firm continually raises 

prices or reduces quality by small enough increments, a habituated consumer may 

continue to buy the same product indefinitely. The model is not explicit about what other 

ingredients need to be added to counteract this predicted behavior. One plausible 

possibility is that habituated consumers pay at least a little attention at the point of 

purchase, enough to be sensitive to highly salient promotions for alternative products. 

 
26 Habitual choices aided by technological innovation may create a sort of dependence which have 

certain advantages (like saving time), but people, or even society as a whole, might also "unlearn" to do 
simple things themselves (e.g. dishwashers, microwaves, food delivery apps). This may contribute to an 
unsustainable lifestyle (at least when we consider the consumption side of this technical progress). That 
is, there may be positive or negative externalities of habitual behaviour.   
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 Another consequence of habit is that new and improved products may have a hard 

time breaking into a market dominated by habitual consumers. Profit-maximizing firms 

with a good understanding of human nature should optimize against this constraint. 

However, if there are societal spillovers that cannot be monetized by a specific firm – such 

as adoption of cheap solar energy – there may be a role for government regulation, and 

recommendations will require good theories of consumer choice. In general, as in other 

areas of policy design, it will surely be useful to have a better understanding of the 

machinery which policies strive to influence – namely, the consumer or citizen brain – to 

figure out how firms and governments can improve welfare of habit-prone consumers, 

without removing the mental benefits of efficient habit formation.  

Finally, the existence of a habitual consumer changes our view on consumer 

sovereignty and the "liberal" market conception, where the consumer reigns according to 

their well-thought-through preferences. If many of the consumers' choices are habitual, and 

firms know this and can influence new habits, that is, create a form of dependence between 

the consumer and the goods or services they buy, then the picture of power distribution and 

sovereignty changes dramatically.   

 

Conclusion  

 

 We described a  simple “neural autopilot” model of habit inspired by evidence from 

neuroscience and animal learning. The goal of models such as these is to have a sensible 

functional interpretation (what are habits for?), a tractable algorithmic specification which 

can be used to fit data and potentially prove theorems, and an underlying mechanistic 

implementation. In the model, habits are executed by recalling the previous choice (made 

in a particular environment or state) and a single measure of “doubt,” and repeating the 

previous choice of doubt is low. If doubt is high, the decision maker reverts to model-based 

decision-making and considers both available options. 

 The model is used to make predictions regarding the demand-side responses to 

changes in price (or quality), as captured by price elasticities. A key insight from 

neuroscience is that habits entail insensitivity to devaluation of rewards from an action, 
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which naturally maps to economic notions of inelastic demand. We can show that price 

elasticities will be zero for small price changes within a “zone of price indifference,” cross-

price elasticities can have different signs, and own-price elasticity can be positive (violating 

the Law of Demand). 

 Furthermore, we predict that people exert less mental effort, misremember their 

purchase history, and may have an impaired ability to consciously explain their choices 

during habitual choice. Although these variables could in principle be included in a richer 

model, they are not explicitly represented in the model presented in this chapter – these 

are simply empirical conjectures that await empirical testing. 
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